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Comparison of
Temperature Changes in the
Pulp Chamber Induced by
Various Light Curing Units, In Vitro

AR Yazici ® A Miifti
G Kugel * RD Perry

Clinical Relevance

The thickness of the residual dentin is a critical factor in the reducing thermal transfer
to pulp, and this transfer varies with the curing unit used.

SUMMARY

This study compared the temperature increase
in a pulp chamber as a result of using various
light-curing units during resin composite poly-
merization, and it determined the effect of
remaining dentin thickness on temperature rise.
A Class II occlusodistal cavity with a remaining
dentin thickness of 2 mm was prepared in an
extracted human mandibular molar. A 2-mm
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layer of fine hybrid resin composite was placed
on the floor of the proximal box. A K-type ther-
mocouple was inserted into pulp chambers filled
with heat sink compound, and pulp chamber
temperature rise (starting temperature: 37.0 =
0.1°C) during polymerization of the composite
was measured. The light-curing units tested
included two halogen lights, Spectrum 800 and
Elipar Trilight (Standard and Exponential
mode); a light-emitting diode (LED, Elipar
Freelight) and a plasma arc (Virtuoso, Xenon
Power Arc). Irradiation time was 40 seconds for
the halogen and LED lights and 3 seconds for the
plasma arc light. Five measurements were car-
ried out for every light-curing unit. The same
experimental design was conducted after the
cavity preparation was modified, leaving a 1-mm
thick dentin layer. The Kruskal-Wallis and multiple
comparison tests were used to evaluate the dif-
ferences among the tested curing units. Mann
Whitney-U tests were used to compare the mean
temperature rise in each curing unit for different
remaining dentin thicknesses.
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The increase in pulp chamber temperature
ranged between 1.40-3.8°C. The highest tempera-
ture rise was observed when using Elipar
Trilight Standard mode, and the lowest tempera-
ture rise was observed with light emitting diode
for both remaining dentin thicknesses. The only
significant differences in temperature rise were
observed between Elipar Trilight Standard mode
and LED. No significant difference (p>0.01)
existed for the different modes of Elipar Trilight.

A statistically significant higher temperature
rise was observed within each curing unit at a
depth of 1 mm compared to 2 mm. Although the
tested light-curing units caused a temperature
rise in the pulp chamber, none exceed the critical
value of 5.5°C.

INTRODUCTION

Light curing units (LCU) for dental applications were
developed to initiate photopolymerization of resin com-
posites, adhesives, sealants and resin cements. The
degree of polymerization of a resin composite is affected
by the irradiation time and light intensity (Rueggeberg,
Caughman & Curtis, 1994; Unterbrink & Muessner,
1995). Visible LCUs may have several drawbacks, such
as degradation of bulbs, reflectors, filters, cracking of
light tips, long curing times and inadequate power out-
put (Nomoto, McCabe & Hirano, 2004), resulting in a
reduction in curing effectiveness. Thus, inadequate
polymerization can lead to gap formation, marginal
leakage, recurrent caries, pulpal inflammation and ulti-
mate failure of the restoration (Pearson & Longman,
1989; Rueggeberg & Caughman, 1993; Yap, 2000).

Several new curing units, including lasers and plasma
arc curing units, have been introduced to the dental
profession within the past few years. Plasma arc curing
units with high intensities and short exposure times
are marketed by manufacturers as reducing polymer-
ization shrinkage and saving clinicians’ time (Manhart,
Garcia-Godoy & Hickel, 2002; Hofmann & others,
2000). Recently, light-emitting diode technology (LED)
has become available as an alternative energy source
for polymerizing dental restorative materials (Mills,
1995). LEDs are solid-state semi-conductor devices that
convert electrical energy directly into light (Duke,
2001).

Modifications of curing methods have also been sug-
gested. Soft-start polymerization, which is character-
ized by an initial low-power density followed by higher
power density, is advocated to minimize internal stresses
in the composite and is thought to compensate for
shrinkage strain (Mehl, Hickel & Kunzelmann, 1997;
Burgess & others, 1999; Manhart & others, 2002).

Light units with high outputs are characterized by an
increase in temperature during light curing (Lloyd,
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Joshi & McGlynn, 1986; Hansen & Asmussen, 1993).
Since pulp is vulnerable to a rise in temperature as a
result of its low-compliance nature, there is the poten-
tial for light curing units to cause pulpal damage
(Masutani & others, 1988; Goodis & others, 1990;
Hussey, Biagioni & Lamey, 1995). Several studies have
looked at the physical properties of resin composites
polymerized with different LCUs versus a conventional
visible light (Asmussen & Peutzfeldt, 2003; Park, Krejci
& Lutz, 2002; Deb & Sehmi, 2003). Few, however, have
compared the temperature increase for different LCU
and curing modes (Goodis & others, 1989; Shortall &
Harrington, 1998; Hannig & Bott, 1999; Hofmann,
Hugo & Klaiber; 2002). Using a different light tech-
nique may reduce the amount of heat generated. The
thickness of dentin between the floor of a cavity prepa-
ration and the pulp chamber may also influence intra-
pulpal temperature rise. Therefore, this study com-
pared temperature increases in the pulp chamber by
various light-curing units during resin composite poly-
merization and determined the effects of the remaining
dentin thickness on temperature rise.

METHODS AND MATERIALS

A freshly extracted, non-carious mandibular molar
stored in a phosphate-buffered saline solution
containing 0.2% sodium azide was used for the study. A
Class II occlusodistal cavity having a remaining dentin
thickness of 2 mm between the pulp chamber and prox-
imal cavity wall was prepared. The mesial root was cut
about 2 mm apically to the cementoenamel junction
and the apical orifice of the root canal was enlarged.
The remaining pulp tissue was removed from the canal
and the pulp chamber was filled with heat sink com-
pound (American Oil and Supply Co, Newark, NdJ,
USA). A thin K-type thermocouple (Pyrometer, The
Pyrometer Instrument Company, Northvale, NJ, USA)
was inserted into the pulp chamber through the cut
area until contact was made with the opposite wall of
the pulp chamber. The position of the thermocouple and
remaining dentin thickness was checked radiographi-
cally from two directions. The root surfaces and lower
portion of the crown of the tooth were submerged in a
water bath (37° = 0.1°C) during the testing procedure.
This method was preferred, as it minimized the effects
of ambient temperature changes and provided a consis-
tent initial body temperature for each data set. All
experiments were performed with the same sample
tooth.

A 2-mm layer of fine hybrid resin composite (Herculite
XRV A2, Kerr Corporation, Orange, CA, USA) was
placed on the floor of the proximal box. This was done
without acid etching or dentin bonding in order to
enable easy removal of the composite after polymeriza-
tion and, thus, to keep the cavity size constant during
repeated removal of the polymerized composite as sug-
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gested by Hannig | Table 1: Details of Light Curing Units Used in This Study
B 1 .
and Ott. (1999) LCU Manufacturer Curing Modes Curing Profile
The resin was Spect 800 Dentspl Standard 550 mW/
. pectrum entsply, andar mW/cm?
Eﬁred W,lth one“(c)f (Halogen) Milford, DE, USA (40 seconds)
€ cél.nngt mgls Elipar Trilight 3M ESPE, Standard (TL1) 800 mW/cm®
accor }ng 0 the (Halogen) St Paul, MN, USA (40 seconds)
manufacturer’s Exponential (TL2) 100-800mW/cm? - 800mW/cm?
reqomr.nende d (15 seconds) (25 seconds)
curing times. For g2 Freelight 3M ESPE, Standard 400 mW/cm?
each curing peri- (LED) St Paul, MN, USA (40 seconds)
od, the tempera- Virtuoso Den-Mat, Co Standard 1980 mW/cm?
ture increase was (PAC) Santa Maria, CA, (3 seconds)
measured for 60 USA
seconds. The

light guide tip of

every curing unit was positioned at

Table 2: Mean Maximum Temperature Rise Observed in Pulp Chamber with
Different Light Curing Units and Remaining Dentin Thicknesses (RDT)

the same point of the occlusal sur-
face. The light curing units tested

included two halogen lights,

Spectrum 800 (Dentsply, Milford

DE, USA) and Elipar Trilight

(Standard and Exponential mode,

3M ESPE, St Paul, MN, USA); a

LED light (Elipar Freelight, 3M
ESPE) and a plasma arc (Virtuoso,

Mean Temperature Rise (°C)
Light-Curing Units RDT (1 mm) RDT (2 mm)
Spectrum 800 2.94 (0.31) 2.34 (0.11)
Elipar Trilight Standard 3.8 (0.12) 2.98 (0.45)
Elipar Trilight Eponential 3.0 (0.70) 2.32 (0.13)
Elipar Freelight 2.14 (0.18) 1.4 (0.12)
Virtuoso 2.42 (0.27) 1.56 (0.15)

Xenon Power Arc, Den-Mat

Corporation, Santa Maria, CA, USA). Details of the
light curing units and curing modes are shown in Table
1. Before beginning the experiments, the light intensity
of the curing units (and the different curing modes)
were assessed with a radiometer (Demetron, Danbury,
CT, USA). The entire procedure was repeated, in turn,
with new resin composite placement for each of the dif-
ferent light curing units. Each light curing unit was
tested five times. To minimize the effects of heating, the
next measurement was started after the tooth had
cooled down to the starting temperature of 37°C.

The cavity preparation was modified in order to eval-
uate the effect of the remaining dentin thickness on
heat transfer to the pulp. After radiographically
verifying the thickness of the remaining dentin as 1
mm, the same experimental design was conducted.

The Kruskal-Wallis and multiple comparison tests
were used to evaluate the differences among the tested
curing units. The Mann Whitney-U test was used to
compare the mean temperature rise in each curing unit
for different remaining dentin thicknesses.

RESULTS

Table 2 shows the mean maximum temperature rise
observed in the pulp chamber with the different light
curing units and modes. Significant differences were
observed among the tested curing lights for both
remaining thicknesses (p<0.05). The multiple compari-
son test demonstrated statistically significant differ-
ences between the mean temperature rise for Elipar

Trilight Standard mode and LED (p<0.05). No signifi-
cant difference (p>0.01) existed for the different modes
of Elipar Trilight.

Comparing the temperature rise between 1 mm and 2
mm of the remaining dentin thickness within each curing
unit and mode, there was a statistically significant
increase of 1 mm thickness (p<0.0.1).

DISCUSSION

Heat has been identified as a primary cause of pulpal
injury (Roberson, Heymann & Swift, 2000). Dentin has
a low thermal conductivity but, in deeper preparations,
the potential for pulp damage is greater, as the tubular
surface area is increased (Brown, Dewey & dJacobs,
1970). Hussey and others (1995) have reported that the
pulp might be endangered by the temperature rise,
which occurs during resin composite polymerization in
vivo. Zach and Cohen (1965) showed that 15% of the
teeth undergoing an intrapulpal temperature rise of
5.5°C were irreversibly damaged.

In this study, all light-curing units tested caused
a measurable temperature increase within the pulp
chambers. However, the average temperature increases
that were found with all light-curing units were lower
than the critical temperature rise reported by Zach
and Cohen (1965), which is thought to cause irre-
versible changes in the dental pulp. The only mean
temperature value (3.80) close to critical values was for
the Elipar Trilight Standard mode. This might have
occurred because of the in vitro test conditions. There
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was no pulp tissue with an intact blood circulation with-
in the pulp chamber that might help to draw off heat
generated from the light curing unit (Chang & Wilder-
Smith, 1998).

Statistically significant differences in temperature
rise were found only between Elipar Trilight Standard
and LED light-curing units, respectively, although
there was a tendency toward higher temperature
values for the halogen units. The greatest temperature
rise observed with the Trilight standard unit can be
explained by the greater irradiance produced by this
unit. On the other hand, interestingly, with the use of
the PAC light, which had the highest output intensity,
the temperature did not increase. Knezevic and others
(2001) also reported that temperature rise was signifi-
cantly lower in the case of polymerization of resin com-
posites with the plasma light compared to those with
the Elipar Trilight halogen curing unit. Danesh and
others (2004) observed no significant differences in tem-
perature rise during composite polymerization when
using conventional halogen and plasma arc light-curing
units.

These results contradict the results of a study by
Hannig and Bott (1999) that showed higher pulpal tem-
perature rises obtained with the plasma curing unit
compared to the halogen light. A possible explanation
for this difference can be found in the duration of the
curing time. In that study, irradiation times of 5 and 10
seconds were chosen for PAC units as recommended by
their manufacturer. However, in this study, irradiation
time was 3 seconds.

Ozturk and others (2004) also found that the Power
PAC unit produced temperature rises greater than con-
ventional halogen (Hilux) and LED (Elipar Freelight)
units. However, they measured temperature rise
beneath a 1-mm dentin disk and not in the pulp cham-
ber. Moreover, their irradiation time for PAC light was
5, 7 and 10 seconds. According to a study by Loney and
Price (2001), the plasma arc curing light used for three
seconds produced lower mean temperature changes
compared to the quartz tungsten halogen unit.

Some researchers have indicated the possibility of
improper cure when composites were light cured with
PAC (Peutzfeldt, Sahafi & Asmussen, 2000; Hofmann &
others, 2002). In this study, as recommended by the
manufacturer of the PAC light, a three-second exposure
time for the universal hybrid composite was used.
However, to adequately cure resins, longer exposure
times may need to be used with PAC units. If used in
this way, PAC lights may produce more heat. Prolonged
curing times are known to be associated with increased
pulpal temperatures (Lloyd & others, 1986; Goodis &
others, 1989, 1990; Knezevic & others, 2001).

Because LED units had a lower irradiance than halogen
units, it is not surprising that LED units caused the
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least temperature rise on pulp for both remaining
dentin thickness. These results concur with those of
Yap and Soh (2003), who compared the thermal emis-
sion of different light curing units and found that LED
units produce less heat than halogen lights. These find-
ings are in agreement with those of Rueggeberg and
others (1994), Hofmann and others (2002) and Ozturk
and others (2004).

The thickness of residual dentin with its low thermal
conductivity is a critical factor in reducing the thermal
transfer to pulp (Tjan & Dunn, 1988). This study sup-
ports previous studies that showed there was a better
correlation between temperature rise and the remaining
dentin thickness (Tjan & Dunn, 1988; Price, Murphy &
Derand, 2000; Cobb, Dederich & Gardner, 2000; Loney
& Price, 2001). As thickness of remaining dentin
decreases, the pulpal insult and response from heat
increases (Roberson & others, 2000). For all samples,
temperature elevation through 2 mm of dentin was less
than for 1 mm of remaining dentin thickness, and all
differences were significant.

In this study, the same tooth was used for the entire
experiment in order to eliminate any possible structural
variables of teeth that might cause differences in
thermal conductivity. Two-mm thick A2 shade composite
specimens were used to ensure uniform and maximum
polymerization (Yap, 2000). This shade was selected to
minimize the effects of colorants on light polymeriza-
tion (Bayne, Heymann & Swift, 1994).

CONCLUSIONS

LED units may reduce the risk of pulp injury, because
of the lesser temperature rise compared to halogen
units. Although the results of this study suggest that
plasma arc and LED curing units cause less tempera-
ture increase in the pulp chamber, it is also important
to assess the physical and mechanical properties of
cured resin composites. Therefore, further studies are
necessary to examine the clinical performance of
restorations cured by high intensity curing lights.

As the remaining dentin increased, the temperature
rise within the pulp chamber decreased. A more conser-
vative cavity preparation, allowing thicker dentin over-
lying the pulp chamber, would help to prevent
increased thermal temperatures in pulp during curing.

(Received 21 February 2005)
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