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Impact of
Adhesive Application and Moisture

on the Mechanical Properties
of the Adhesive Interface

Determined by the
Nano-indentation Technique

SUMMARY

Objectives: This study assessed the nanohard-
ness (NH) and Young’s modulus (YM) of resin-
dentin bonding components formed by an
ethanol/water-based (Adper Single Bond Plus
[SBP]) and an acetone-based system (One Step
Plus [OSP]) under different moisture conditions
and application methods.

Material and Methods: On 24 human molars, a
flat, superficial dentin surface was exposed by
wet abrasion. After acid-etching, two coats of
SBP or OSP adhesive were applied on either a
dry or rewetted dentin surface under vigorous
rubbing action or inactive application. After
polymerization of the adhesives (600 mW/cm2/20
seconds), composite buildups were constructed
incrementally and the specimens were stored in
water (37°C/24 hours). They were cross-sectioned
perpendicular to the resin-dentin interface to
obtain 1.5 mm-thick slices that were embedded
and polished before the test. Nano-indentations
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Clinical Relevance

The vigorous rubbing action of acetone and ethanol/water-based adhesives into dry demineral-
ized dentin resulted in high nanohardness and Young’s modulus in the hybrid layer, and mois-
ture increased the nanohardness and Young’s modulus of Adper Single Bond Plus in the adhe-
sive layer.
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were made on the resin composite, adhesive sys-
tem, hybrid layer and mineralized dentin. The
results of NH and YM (GPa) of the adhesive sys-
tem and hybrid layer were analyzed using three-
way repeated measures ANOVA and Tukey’s mul-
tiple comparison tests (α=0.05).

Results: When the dentin was kept wet, the
mode of application did not affect the studied
properties within the hybrid layer. On the other
hand, the vigorous application mode increased
the NH and YM of both adhesives applied in air-
dried dentin. In the adhesive layer, the highest
NH and YM were observed only for SBP, especial-
ly when applied in wet dentin under vigorous
action.

Conclusion: It was concluded that: 1) the vigor-
ous application of both adhesives in dry dentin
resulted in high nanohardness and Young’s mod-
ulus values in the hybrid layer and 2) in the adhe-
sive layer, the moisture associated with the vig-
orous application mode increased the nanohard-
ness and Young’s modulus values of Adper Single
Bond Plus.

INTRODUCTION

It is common knowledge that etch-and-rinse adhesive
systems require previous dentin demineralization with
phosphoric acid, and the resulting demineralized
dentin must be kept moist in order to maintain inter-
fibrillar porosity for resin monomer infiltration.1-2

Studies have shown that bonding to demineralized
dentin in an air-dried condition results in an improper
adhesive infiltration, with as much as one-half of the
zone of demineralized dentin3-4 due to a reduction in the
permeability to resin monomers.5 This condition has
been reflected by low early resin-dentin bond strength.6-7

A common and widespread way to reverse such an
undesirable condition is by maintaining the demineral-
ized dentin fully hydrated before adhesive application.
This technique has been referred to as wet bonding and
has been used for more than 15 years. Moist deminer-
alized dentin provides a more porous collagen network,
and thus greater infiltration of adhesive monomers5-8

occurs. On the other hand, managing an adequate
degree of moisture for the different solvent-based adhe-
sives9 is not easily accomplished, and residual water is
not likely to be com-
pletely removed
prior to polymeriza-
tion.10-11 Under ideal
conditions, as the
adhesive is applied,
the water within
the collagen fibrils
should evaporate to

provide space for the formation of a highly cross-linked
polymer entangled with the collagen fibrils. However,
HEMA, which is a primary component in many simpli-
fied etch-and-rinse commercial adhesives, can dramati-
cally reduce water evaporation10-11 by reducing its per-
centage in the solution. Consequently, water entrapped
within the collagen network might cause phase separa-
tion of hydrophilic and hydrophobic monomers12 and
thus reduce the mechanical properties of the adhesive
layer13-14 that compromises the resin-dentin bonds.

Thus, any attempt to produce an increased rate of
water and solvent evaporation, along with monomer
penetration, might turn the adhesive interface stronger
and more durable. Recent studies have shown that
early and long-term resin-dentin bond strength was sig-
nificantly improved by vigorously rubbing two-step
etch-and-rinse adhesives into both wet and dry dem-
ineralized dentin.15-16 The authors attributed this find-
ing to improvement in the mechanical properties of the
polymer formed within the demineralized dentin.
However, this hypothesis has not currently been evalu-
ated. Therefore, this study evaluated the effects of the
degree of moisture and the application mode on the
nanohardness and Young’s modulus of components of
the resin-dentin interface by the nano-indentation tech-
nique. The null hypothesis tested in this study was that
no significant difference will be observed in the
mechanical properties of the hybrid and adhesive layer
under the different conditions of moisture and applica-
tion mode.

METHODS AND MATERIALS

Twenty-four extracted, caries-free human third molars
were used. The teeth were collected after obtaining the
patient’s informed consent. The University Estadual de
Ponta Grossa Institutional Review Board approved this
study under protocol #06257/06. The molars were dis-
infected in 1% thymol, stored in distilled water and
used within six months of extraction.

A flat, superficial dentin surface was exposed on each
tooth after wet grinding the occlusal enamel on #180-
grit SiC paper. The enamel-free, exposed dentin sur-
faces were further polished on wet #600-grit silicon car-
bide paper for 60 seconds to standardize the smear
layer. Two different solvent-based etch-and-rinse adhe-
sive systems were tested: Adper Single Bond Plus (SBP,
3M ESPE, St Paul, MN, USA), an ethanol/water-based
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Adhesive Systems Composition Batch #

Adper Single Bond Plus BisGMA, HEMA, dimethacrylates, ethanol, water, 7KH
photoinitiator and a methacrylate functional copolymer of 
polyacrylic and polyitaconic acids and 10% by weight of 5
nanometer-diameter spherical silica particles.

One Step Plus Biphenyl, dimethacrylate, hydroxyethyl methacrylate 0700004208
acetone, dental glass.

Table 1: Composition and Batch Number of the Adhesive Systems Employed in This Investigation
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system, and One-Step Plus (OSP, BISCO Inc,
Schaumburg, IL, USA), an acetone-based system (Table
1). The acid etching was performed with the respective
acids of the different adhesives. Contrary to the manu-
facturer’s instructions, the surfaces were rinsed with
distilled water for 15 seconds and air-dried for 30 sec-
onds using oil-free compressed air to collapse the colla-
gen fibers. The adhesives were applied onto the surface,
which was either kept dry or rewetted for 10 seconds,
using different amounts of distilled water (approxi-
mately 1.5 or 3.5 µl, for SBP and OSP, respectively).9

The differences in the amount of water used for rewet-
ting the dentin was due to differences in the vapor pres-
sure and Hansen’s solubility parameters from solvents
of each adhesive system.9 The adhesives were applied
onto the dentin as follows:

1) No rubbing action (NRA): In this group, the adhe-
sive was only spread over the entire surface for approx-
imately three seconds and left undisturbed for seven
seconds. Then, an air stream was applied for 10 seconds
at a distance of 20 cm.

2) Vigorous rubbing action (VRA): The adhesive was
rigorously agitated with strong finger pressure on the
entire dentin surface for approximately 10 seconds. An
air stream was applied for 10 seconds at a distance of
20 cm. Before performing the adhesive application,
with the aim of improving standardization of the equiv-
alent manual pressure that would be placed on the sur-
face of the demineralized dentin, the operator was
trained in the surface of an analytical balance (Mettler,
type H6; Columbus, OH, USA). In this group, the pres-
sure was equivalent to approximately 37.5 ± 7.9 g. After
the operator determined the load in the manual bal-
ance, this procedure was repeated seven times and a
mean ± standard deviation was calculated. This proce-
dure was repeated at the beginning of every laboratory
setting in order to ensure the operator’s calibration.

In both groups, a second coat of the adhesive layer
was applied in the same manner as the first layer. The
time lapse between the start of the adhesive application
and the light-curing step (Optilux Demetron 401, Kerr,
CA, USA at 600 mW/cm2) was approximately 40 sec-
onds. The light curing was performed for the respective
recommended time (10 seconds). Resin composite
buildups (Z250, 3M ESPE) were placed on the bonded
surfaces (1 mm increments), which were individually
light activated for 30 seconds. All bonding procedures
were carried out by a single operator at 24°C room tem-
perature.

After storing the bonded teeth in distilled water for 24
hours at 37°C, the teeth were longitudinally sectioned
in a mesio-to-distal direction across the bonded inter-
face using a diamond saw in a Labcut 1010 machine
(Extec Corp, Enfield, CT, USA) under water cooling at
300 rpm to obtain 1.5 mm-thick bonded slices. The

bonded slice from the center of the tooth was selected
for the nano-indentation technique.

The resin-bonded dentin slices (n=3 for each experi-
mental condition) were individually embedded in a self-
cure polyester resin (Milflex, Milflex Indústrias
Químicas, São Bernardo do Campo, SP, Brazil) and,
after 24 hours, the molds were manually polished via
waterproof silicon carbide papers of decreasing abra-
siveness (600, 1000, 1200, 1500 and 2000). The samples
were then polished using soft discs with diamond sus-
pensions (1 and 0.25 µm) in an automatic polishing
device (Aropol S; Arotec, Cotia, SP, Brazil) at 300 rpm.
The polishing debris from each silicon carbide paper
and diamond paste were ultrasonically removed for five
minutes, then again upon completion of the procedure.
All samples were kept in the ultrasonic device for 20
minutes.

For the nano-indentation measurements, the comput-
er-controlled Nano Indenter XP (TPS Systems Corp,
Oak Ridge, TN, USA) was employed, mounted with a
triangular pyramidal diamond indenter—Berkovich.
By means of the computer-controlled X-Y table, the
dried specimen was transferred to the indenter. An
accurate calibration of the distance between the micro-
scope and the indenter was run before testing to ensure
a precise transfer of the pre-programmed positions to
the indenter.

Prior to starting the measurement, two groups of nine
equally spaced indentation positions were programmed
for each region by a remote video control (connected to
the light microscope attached to the nano-indenter
device). In order to obtain precise measurements, the
interval of each indentation was twice the size of the
indentation in each region, with the aim of avoiding cor-
ruption of the abutment.17

In the central area of the resin composite and adhe-
sive layer, the surface approach rate of the nano-inden-
ter was set at 10 nm/seconds and the duration of the
loading and unloading indentation was set at five sec-
onds each. The pre-programmed distance among
indentations for the dentin, adhesive layer and resin
composite were 10 µm and 20 µm, respectively, with a
load of 5g. At the hybrid layer, the surface approach
rate was the same; however, the load employed was 0.1
g and the indentations (n=9) were programmed for a
distance of 3 µm. The reduction in load was required to
reduce the indentation size so that the indentations
could be positioned entirely within the area of the
hybrid layer.

Epoxy resin replicas of all specimens were gold coat-
ed and analyzed under Scanning Electron Microscopy
(Shimadzu, Kyoto, Japan) to verify the indentation
geometry and the accurate positioning of the pre-pro-
grammed indentations. Those found to be outside the
specified areas were excluded from the sample. The
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nanohardness and Young’s modulus of each area were
computed following the method by Oliver and Pharr.18

The nanohardness and Young’s modulus data
obtained in the adhesive and hybrid layer were sub-
jected to a three-way repeated measures analysis of
variance (Adhesive system vs Moisture vs Mode of
application) and Tukey’s test for contrast of the means
(α=0.05). A single mean and standard deviation taken
from all specimens was calculated for the resin com-
posite and mineralized dentin.

RESULTS

The mean values and standard deviations for
nanohardness (GPa) in the resin composite and miner-
alized dentin were 1.02 ± 0.07 and 0.69 ± 0.11, respec-
tively. For Young’s modulus of elasticity, the mean val-
ues and respective standard deviations (GPa) were
14.94 ± 0.67 and 17.94 ± 1.84 for the resin composite
and mineralized dentin, respectively. The total number
of measurements for the resin composite and mineral-
ized dentin was 27 nano-identations for each experi-
mental condition.

Hybrid Layer

The overall nanohardness and Young’s modulus values
for the experimental groups are depicted in Table 2.
Three-way repeated measures ANOVA showed a signif-
icant effect for the interaction Adhesive System vs
Moisture vs Mode of application for the hardness
(p=0.004) and Young’s modulus (p=0.005).

Both the hardness and the Young’s modulus were gen-
erally higher for the adhesive One Step Plus. The mode
of application did not affect the studied properties with-
in the hybrid layer when the dentin was kept moist
before the adhesive application. On the other hand, the
vigorous application mode increased the nanohardness
and Young’s modulus of both adhesives applied in air-
dried demineralized dentin; however, this increase was
only statistically significant for One Step Plus.

Adhesive System

The overall nanohardness and Young’s modulus values
for the experimental groups are depicted in Table 3.
Three-way repeated measures ANOVA showed a signif-
icant effect for the interaction Adhesive System vs
Moisture vs Mode of application for the hardness
(p=0.004) and Young’s modulus (p=0.006).

54 Operative Dentistry

Hardness

Adhesive Vigorous Rubbing Action No Rubbing Action

Wet Dentin Dry Dentin Wet Dentin Dry Dentin

Adper Single Bond Plus 0.27 ± 0.10 c 0.37 ± 0.14 b,c 0.29 ± 0.15 c 0.29 ± 0.22 c

One Step Plus 0.45 ± 0.12 b 0.64 ± 0.27 a 0.45 ± 0.16 b 0.39 ± 0.23 b,c

Young’s Modulus

Adhesive Vigorous Rubbing Action No Rubbing Action

Wet Dentin Dry Dentin Wet Dentin Dry Dentin

Adper Single Bond Plus 6.87 ± 2.0 C,D 7.38 ± 3.1 C 5.69 ± 1.6 D 6.85 ± 0.2 C,D

One Step Plus 10.9 ± 3.5 B 14.2 ± 5.2 A 9.91 ± 2.7 B 8.97 ± 5.9 B

Similar lowercase letters indicate means statistically similar (p>0.05) for hardness. Similar uppercase letters indicate means statistically similar (p>0.05) for Young’s modulus.

Table 2: Means and Standard Deviations of Nanohardness (GPa) and Young’s Modulus (GPa) From the Hybrid Layer for All
Experimental Conditions

Hardness

Adhesive Vigorous Rubbing Action No Rubbing Action

Wet Dentin Dry Dentin Wet Dentin Dry Dentin

Adper Single Bond Plus 0.39 ± 0.04 a 0.32 ± 0.05 b 0.37 ± 0.08 a 0.37 ± 0.06 a

One Step Plus 0.29 ± 0.04 b,c 0.31 ± 0.06 b,c 0.30 ± 0.07 b,c 0.28 ± 0.04 c

Young’s Modulus

Adhesive Vigorous Rubbing Action No Rubbing Action

Wet Dentin Dry Dentin Wet Dentin Dry Dentin

Adper Single Bond Plus 7.13 ± 0.80 A 6.07 ± 1.00 C,D 6.76 ± 1.01 A,B 6.38 ± 1.01 B,C

One Step Plus 5.72 ± 0.82 D 6.09 ± 1.30 B,C,D 6.55 ± 1.61 A,B,C 6.38 ± 1.11 B,C

Similar lowercase letters indicate means statistically similar (p>0.05) for hardness. Similar uppercase letters indicate means statistically similar (p>0.05) for Young’s modulus.

Table 3: Means and Standard Deviations of Nanohardness (GPa) and Young’s Modulus (GPa) from the Adhesive Layer for All
Experimental Conditions
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Interestingly, different findings were observed in the
adhesive layer compared to the hybrid layer substrate.
In the adhesive layer, the highest nanohardness and
Young’s modulus were observed for Adper Single Bond
Plus, especially when applied in moist dentin under
vigorous agitation. For One Step Plus, the nanohard-
ness and Young’s modulus of all conditions were simi-
lar, except for the Young’s modulus under moist and
vigorous agitation conditions.

DISCUSSION

Evidence from the literature shows that, when dem-
ineralized dentin is air-dried, the water within the col-
lagen matrix is removed and the collagen fibrils are
brought into close contact. The collagen fibrils form
weak interpeptide bonds that render the matrix
shrunk, stiff19-20 and practically impermeable to resin
adhesives, reducing the infiltration rate of the bonding
resin within the hybrid layer to approximately 50%
when applied to dry instead of wet dentin.3-4,21

Previous studies have reported that the adverse effect
of over-drying could be reversed by vigorously rubbing
the adhesive on the dentin substrate.15-16 This approach
enabled achievement of high early and long-term resin-
dentin bond strength even to air-dried demineralized
dentin. It also demonstrated that the values obtained
under vigorous application were much higher than the
slight or inactive application.15-16 In fact, the current
study partially corroborates with previous investiga-
tors, as the highest values of hardness and Young’s
modulus were obtained under vigorous rubbing action
in a dry dentin.

Dal-Bianco and others15 and Reis and others16 specu-
lated that two factors could have been responsible for
such an increase in bond strength values under the vig-
orous application method. The first is that an improve-
ment in the rate of water/solvent evaporation might
occur. It seems obvious that, by rubbing the adhesive,
solvent/water molecules entrapped between monomers
from the inner layers of the hybrid and adhesive layer
could be brought to the surface, likely resulting in their
breaking away from the neighboring molecules and,
therefore, increasing the rate of evaporation. In addi-
tion, the rubbing action can also cause a slight increase
in local temperature, and the resulting alteration on
the kinetics energy of the molecules could contribute to
the high evaporation rate.

The second factor is that the rubbing action could
have increased diffusion into the demineralized dentin,
which is known to be limited under slight or inactive
application.21-23 The current investigation does not agree
with the first hypothesis raised by Dal-Bianco and oth-
ers15 and Reis and others.16,24 It only agrees with the sec-
ond. If higher water/solvent evaporation had occurred,
one would expect high nanohardness and Young’s mod-

ulus values at the adhesive layer when the adhesive
was vigorously applied in the dry environment. This
was not the case for both adhesives and led the authors
of the current study to reject the hypothesis that sig-
nificantly higher solvent/water evaporation occurs with
vigorous application under clinical application condi-
tions.

Also, contrary to what was expected, the application
of adhesive in the dry substrate reduced nanohardness
and Young’s modulus of the adhesive layer formed with
Adper Single Bond Plus under vigorous rubbing action.
Exactly the opposite response was expected, due to pre-
vious literature findings that demonstrated that the
degree of polymerization is negatively correlated with
the amount of solvent presented in the adhesive,24-26

meaning that the higher the amount of water/solvent,
the lower the degree of polymerization. The behavior of
One Step Plus was indifferent, meaning that, regard-
less of the mode of application or degree of substrate
moisture, the nanohardness and Young’s modulus was
not affected.

This difference between these two materials must
rely on dissimilar viscosity of both systems. There is a
known solvent concentration at which maximum con-
version is reached, more or less solvent than this
amount can decrease monomer conversion,27 which
seems related to the viscosity of the adhesive film.24

Although not measured in this study, it was visually
evident that OSP is far more fluid than SBP. Thus, one
can assume that the remaining water from the wet
bonding technique could have been beneficial to the
SBP by increasing the flowability of the adhesive,
enlarging the mobility of the reactive components dur-
ing polymerization and resulting in increased
nanohardness values.

Opposite results were measured in the hybrid layer
when compared to the adhesive layer. Referencing
Table 2, one can observe that vigorous rubbing
improved the nanohardness and Young’s modulus of
both adhesives, primarily under dry conditions. The
mechanical pressure applied to the demineralized
dentin surface during the rubbing action might have
compressed the collagen network like a sponge, after
which release created a sucking pressure, pulling the
adhesive solution into the collapsed collagen mesh,28

causing per se an increase in the measured properties
of these adhesives within the hybrid layer due to better
resin infiltration. However, this hypothesis should be
confirmed by imaging methods, such as Scanning or
Transmission Electron Microscope.

Another important feature taken from the current
study is that the properties of the OSP adhesive inside
the hybrid layer were higher than those obtained with
SBP. However, by looking at the same properties in the
adhesive layer, the opposite can be seen. The One Step
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system had already demonstrated possessing lower
ultimate tensile strength than Single Bond29-30 when
tested as bar-like specimens following the microtensile
method. This could be attributed to the high proportion
of solvent/monomer concentration that prevents the
monomers from contacting to form a high cross-linking
polymer.

The same reason that was responsible for the lower
mechanical properties of OSP at the adhesive layer
could be used to explain why the properties of this
material increased significantly within the hybrid
layer. Since this material contains more solvents and is
less viscous, its penetration within the hybrid layer was
probably higher than that of SBP. In fact, this was
already confirmed by a previous micro-Raman spectro-
scopic study.31 According to the authors, the contribu-
tion of Single Bond adhesive is lower than 50%
throughout nearly half of the demineralized dentin. In
contrast, the penetration of One Step adhesive was
superior to 50% throughout most of the demineralized
dentin layer.31

The current study focused on the early mechanical
properties of the adhesive interface. No attempt was
made to evaluate the mechanical properties of this
interface over time. However, it is known from the lit-
erature findings that, if the resin is poorly infiltrated or
if the resin slowly hydrolyzes and leaches from the
hybrid layer, the intrinsic collagenolytic and gelati-
nolytic activity of the dentin matrix can be expressed
and attack the collagen, causing it to solubilize.32 This
weakens the hybrid layer and shifts more functional
stress to the remaining fibrils, causing them to defibril-
late and enlarging the porosities within the hybrid
layer.32 At the same time, water can cause softening of
the polymer network33 either inside the hybrid layer or
at the adhesive interface, deteriorating the properties of
this interface in a likely different manner, which still
deserves further evaluation.

The nano-indentation measurements made on the
resin composite and mineralized dentin were made in
order to contrast with the literature findings. Although
the values of hardness and Young’s modulus of both
substrates vary among studies, they are within the
range published by other authors.34-37

For more than 15 years, the wet bonding technique
has been recommended for dentin bonding. The ration-
ale behind this is, as long as dentin is kept fully hydrat-
ed, the dentin matrix does not collapse and free space is
available for resin infiltration; otherwise, monomers
would not infiltrate and low bond strength would be
achieved. However, it seems that bonding can also be
accomplished in air-dried demineralized dentin. This
collagen collapse can be reversed by altering the
method by which adhesives are applied to demineral-
ized dentin substrates. The vigorous application mode

can provide better infiltration, yielding an increase in
nanohardness and Young’s modulus of the hybrid layer,
as demonstrated in the current investigation. This
explains why previous investigations found high early
and six-month bond strength values for simplified etch-
and-rinse adhesives under dry dentin substrate and
should therefore be used in clinical scenarios.15-16

CONCLUSIONS

Based on the results of the current investigation, the
authors can conclude that the vigorous rubbing action
of both adhesives in dry demineralized dentin resulted
in high nanohardness and Young’s modulus in the
hybrid layer, and moisture increased the nanohardness
and Young’s modulus of Adper Single Bond Plus in the
adhesive layer.
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