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SUMMARY

This study evaluated the effect of different light
energy densities on conversion degree (CD) and
Knoop hardness number (KHN) of RelyX ARC
(RLX) resin cement. After manipulation accord-
ing to the manufacturer’s instructions, RLX was
inserted into a rubber mold (0.8 mm X 5 mm) and
covered with a Mylar strip. The tip of the light-
curing unit (LCU) was positioned in contact
with the Mylar surface. Quartz-tungsten-halo-
gen (QTH) and light-emitting diode (LED) LCUs
with light densities of 10, 20 and 30 J/cm2 were
used to light-cure the specimens. After light cur-
ing, the specimens were stored dry in lightproof
containers at 37°C. After 24 hours, the CD was
analyzed by FT-Raman and, after an additional
24-hours, samples were submitted to Knoop
hardness testing. The data of the CD (%) and
KHN were submitted to two-way ANOVA and the
Tukey’s test (αα=0.05). QTH and LED were effec-
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Clinical Relevance

Light energy density can influence the curing of dual-cured resin cement. The ultimate physi-
cal properties of dual-cured resin cement depend on light energy delivered from the light-cur-
ing unit. It can guide the clinicians to select the appropriate curing unit for curing dual cement.
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tive light curing units. For QTH, there were no
differences among the light energy densities for
CD or KHN. For LED, there was a significant
reduction in CD with the light energy density set
at 10 J/cm2. KHN was not influenced by the light-
curing unit and by its light energy density.

INTRODUCTION

The resin-luting agent became popular because of its
high strength, low solubility and esthetic appearance.1

An increasing number of products are available on the
market today. The majority of resin-luting materials
employ dual-cured polymerization, which combines the
desirable properties of both chemically-cured and
light-cured cements, such as a wide range of shades,
rapid initial hardening and further curing by the
chemical catalyst2 and extended working time, provid-
ing the operator with more control over setting the
material than the chemically-cured system, alone.3 On
a two-paste system, the dual-cured resin-luting agents
have both initiation systems, because the base paste
usually contains camphorquinone, both aliphatic
amine and aromatic tertiary amine and the catalyst
paste, which contains benzoyl peroxide.4

Several studies investigated the effect of the poly-
merization mode on the degree of conversion, mechan-
ical properties or the bond strength of resin-luting
agents.4-6 The manufacturers of dual-cured resin
cements strive for these materials to be effectively
polymerized solely by chemical reaction and the chem-
ical curing to be recommended for cementation of the
restorations where light penetration is compromised.4

However, the majority of dual-cured resin cement does
not reach similar conversion degree or hardness values
when tested in the presence or absence of light activa-
tion.4

The activation of current resin-based materials by
blue light is well established, but a problem arises as
the intensity of the activating light is reduced by pas-
sage through air, tooth and restoration.7 The most com-
monly used light-curing units are quartz tungsten
halogen light-curing units that emit a wide spectrum of
wavelengths.8-9 These types of light sources usually
operate at light intensities between 400 and 800
mW/cm2 and polymerize composite within 40 seconds
at depths of up to 2 mm.10 Newly developed light cur-
ing units operate at relatively high intensity and are
purposed to provide optimum properties to composites
in a shorter exposure time.9

The hypothesis of the current study was that the con-
version degree and hardness of dual-cured light acti-
vated resin cement is dependent on the light energy
densities and light-curing unit.

METHODS AND MATERIALS

Specimen Preparation

The dual-cured resin cement used in the specimen
preparation was RelyX ARC–RLX (3M ESPE, St Paul,
MN, USA). Rubber molds 5 mm in diameter and 0.8
mm thick were used as matrix for the resin cement
specimens. After manipulation according to the manu-
facturer’s instructions, the cement was inserted into
the mold and covered with a Mylar strip (Polidental Ind
and Com, São Paulo, Brazil). The tip of the light unit
was positioned in contact with the Mylar surface during
light curing using a conventional quartz-tungsten-halo-
gen light-curing unit, Degulux—QTH (Degussa Dental,
Hanau, Germany) with a light intensity of 800 mW/cm2

and a light emitting diode, Smartlite PS–LED
(Dentsply, Konstanz, Germany) with a light intensity of
1100 mW/cm2. The output power energy (mW) emitted
by each light-curing unit was measured with a digital
power meter (Ophir Optronics Inc, Danvers, MA, USA)
and the diameter of the light guide tip (cm) was meas-
ured with a digital caliper (Mitutoyo Tokyo, Japan). The
irradiance (mW/cm2) was computed as the ratio of the
output power by the area of the light guide tip. Light
densities of 10, 20 and 30 J/cm2 were used to light-cure
the specimens, which were obtained as the product of
irradiance and time of exposure. After light curing, the
specimens (n=5) were stored dry in lightproof contain-
ers at 37°C. After 24 hours, the top surface of each spec-
imen was submitted to conversion degree analysis by
FT-Raman. After an additional 24 hours, these same
specimens were submitted to the Knoop hardness test.

Conversion Degree (CD)

The conversion degree was analyzed 24 hours after
light curing. Spectra of the uncured and cured resins
were obtained using an FT-Raman Spectrometer (RFS
100/S—Bruker Inc, Karlsruhe, Germany). To excite the
spectra, the defocused λ 1064.1 nm line of an Nd:YAG
laser source was used. The maximum laser power inci-
dent on the sample surface was about 200 mW and the
spectrum resolution was 4cm-1. The aluminum mold with
uncured resin was positioned in the sample compart-
ment and the sample stage was mounted on an optical
rail. The FT-Raman spectra of the uncured resin were
obtained using 200 scans without removing the resin of
the aluminum rods. For each specimen surface, three
spectra were acquired in three distinct points, obtain-
ing 90 spectra in the total. The FT-Raman spectra were
analyzed by selecting a spectra region from 1590 to
1660cm-1. The Raman vibration stretching mode in 1609
and 1638cm-1 was fitted by Lorentzian shapes to obtain
the height of the peaks using the Microcal Origin soft-
ware. To calculate the conversion degree, the height
ratio of the peaks at 1609 and 1638cm-1 were used in the
Equation 1. The mean value and standard deviation
were calculated for each series.
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Equation 1:

DC (%) = 100*[1 – R cured/R uncured]

where R = band height at 1638cm-1/band height at
1609cm-1

The FT-Raman results were obtained for each speci-
men and the values were submitted to two-way ANOVA
and the Tukey’s test (α=0.05).

Knoop Hardness Number (KHN)

After 48 hours of light-curing, the specimens were lon-
gitudinally sectioned in two equal parts under water
cooling with a diamond saw (Extec model 12205, Extec
Corp, Enfield, USA). The exposed surfaces were
sequentially polished under water cooling with #400,
#600 and #1200 grit Silicon Carbide sandpapers
(Carborundum, Saint-Gobain, Recife, Pernambuco,
Brazil) for 15, 30 and 60 seconds, respectively, in a uni-
versal polishing machine model APL-4 (Arotec, Cotia,
Brazil).

Microhardness measurements were performed in a
Microhardness Tester model HMV-2 Shimadzu
(Shimadzu, Tokyo, Japan). Three sequences of three
indentations each (50g during 15 seconds) were per-
formed to obtain three hardness values for each depth:
50 µm, 400 µm and 750 µm.

A mean hardness value was obtained for each speci-
men and the values were submitted to two-way ANOVA
and to the Tukey’s test (α=0.05).

RESULTS

The two-way ANOVA for CD is presented in Table 1 and
shows statistical significance for light energy density
(p=0.01) and the interaction “density” X “curing unit”
(p=0.003). There was no statistically significant differ-
ence for the light curing unit (p=0.67).

For comparisons among the groups, the data of the
CD was submitted to the Tukey’s test (Table 2). For
QTH, there was no significant difference among the dif-
ferent light energy densities, but for LED, there was a
significant decrease in CD, with densities of 10 J/cm2

(p<0.05).

Two-way ANOVA for KHN is presented in Table 3,
which showed significance for curing unit (p=0.008)
and interaction “density” X “curing unit” (p=0.003).
There was no statistical significant difference in den-
sity (p=0.12).

In Table 4, the comparison among the groups can be
verified. Both light-curing units (QTH/LED) presented
statistically similar KHN mean values with different
light energy densities.

Source of Variation Df Mean Square F P-value

Curing unit 1 0.37 0.17 0.67

Density 3 7.9 3.8 0.01*

Curing unit X Density 3 11.63 5.54 0.003*

Error 32 2.09

Total 39 126.32

*Statistically significant difference.

Table 1: Results of Two-way ANOVA (dependent variable: CD)

Density 10 J/cm2 (seconds) 20 J/cm2 (seconds) 30 J/cm2 (seconds)

QTH 82.97(1.04)a/A (12 seconds) 83.88(2.82)a/A (25 seconds) 84.19(1.01)a/A (37 seconds)

LED 81.10(1.32)b/A (9 seconds) 83.60(1.35)a/A (18 seconds) 83.89(0.97)a/A (27 seconds)

*Means followed by distinct small letters in the same line and capital letters in the same column were statistically different (Tukey’s test, p<0.05).

Table 2: Mean Values and Standard Deviations of Conversion Degree (%) for RLX in According to Light Energy 
Density and Time of Exposure (seconds)

Source of Variation Df Mean Square F P-value

Curing unit 1 94.27 7.70 0.008*

Density 3 25.29 2.06 0.12

Curing unit X Density 3 71.01 5.80 0.003*

Error 32 12.23

Total 39 774.76

*Statistically significant difference.

Table 3: Results of Two-way ANOVA (dependent variable: KHN)
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DISCUSSION

Several studies measured the intensity of light-curing
units and demonstrated that the degree of polymeriza-
tion of resin cements decreased with the decrease in
light intensity.4-5 For resin composites, a light intensity
up to 400mW/cm2 is generally recommended.11

The results of the current study show that QTH pro-
vides the same resin cement values of CD and KHN
when different light energy densities are compared.
Cross-linking reaction and polymerization continue,
even after light curing has been completed.2 The light
energy density promoted by this kind of light curing
unit has the ability to activate polymerization and
achieve reliable CD and KHN values. Both were meas-
ured in the same samples, the former 24 hours after
light curing and the latter after an additional 24 hours,
in an attempt to verify correlation between CD and
KHN. According to the results, there is no correlation
between these two variables. Under low light intensity
irradiation, dual-cured resin cement still has a large
amount of free radicals, mostly from chemical catalysts
trapped in the hardening resin matrix. Although these
trapped free radicals did not contribute significantly to
the overall DC, they could improve the cross-linking
density of dual-cured resin-luting agents by combining
with a double link of methacrylate groups in local resin
matrix to complete termination.12

LED presented a significant reduction in CD with 10
J/cm2. It could result in high light intensity (1100
mW/cm2) combined with a short exposure time of 10 sec-
onds. High intensity may produce more starter radicals
and shorter polymer chains than a low intensity light
curing unit.13-14 Some dual-cured resin cements exposed
to initial light curing polymerize fast, resulting in a vis-
cous gel. The rapid increase in viscosity may hinder the
migration of active radical components responsible for
further chemically induced polymerization.6

RLX received a total of 11 J/cm2, but several studies
showed that at least 12 J/cm2 is necessary for light cur-
able resin composite-based materials to achieve reliable
CD and KHN values.15 The CD mean value was 81.10%
and could not be correlated to KHN. Previous studies
verified similar values of conversion degree in resin
composite samples with different hardness values,
which were attributed to differences in the polymer
crosslinking density.16 The ultimate hardness value of

dual-cured resin cements depends on the amount of
time exposure to the curing light.5

Most dual-cured resin cements still require photo-
activation and demonstrate inferior hardness when
light activation is omitted.17 With a high-power light
unit, more photons are available per second for absorp-
tion,18 more photoinitiator reacts with amine and more
free radicals are available for polymerization.19 This
photoinitiator is excited in the presence of light with an
adequate wavelength and sufficient irradiance.20 Rapid
polymerization may also result in the formation of high
cross-linked short polymer chains.21

The results of the current study show that all light
energy densities achieve high CD and KHN values.
Additionally, the light curing unit tip was directly in
contact with the resin cement. In the dental practice,
this only occurs with the cement margin of the restora-
tion. Therefore, many other factors can modify this
result, such as restoration shade, thickness and materi-
al type and commercial brands of material for indirect
restoration. Further research and controlled clinical tri-
als are needed before clinical protocol recommendations
can be given.

CONCLUSIONS

For the dual-cured resin cement used:

1) QTH and LED were effective light curing units;

2) LED provided a significant reduction in CD,
with a light energy density of 10 J/cm2;

3) KHN was not influenced by the light-curing
unit or by its light energy density.
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