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Clinical Relevance

Novel composite and polymer-infiltrated ceramic CAD/CAM materials benefit from etching
of the intaglio surface with hydrofluoric acid or sandblasting, both followed by silanization.

SUMMARY

Objectives: To evaluate the effect of different

surface treatments on the bond strength to a

composite and a polymer-infiltrated ceramic
CAD/CAM block after six-month artificial ag-
ing.

Methods and Materials: Two types of CAD/CAM
blocks (Cerasmart, GC; Enamic, Vita Zahnfab-
rik) were cut in slabs of 4-mm thickness,
divided into six groups, and subjected to the
following surface treatments: group 1: no
treatment; group 2: sandblasting (SB); group
3: SB + silane (Si); group 4: SB + Si + flowable
composite (see below); group 5: 5% hydrofluor-
ic acid etching (HF) + Si; and group 6: 37%
phosphoric acid etching (H3PO4) + Si. Sections
of the same group were luted together (n=3: 3
sandwich specimens/group) using a dual-cure
self-adhesive cement for all groups, except for
the sections of group 4 that were luted using a
light-curing flowable composite. After three
weeks of storage in 0.5% chloramine at 378C,
the sandwich specimens were sectioned in
rectangular microspecimens and trimmed at
the interface to a dumbbell shape (1.1-mm
diameter). One half of the specimens was
subjected to a microtensile bond strength
(lTBS) test, and the other half was tested after
six months of water storage (aging). Data were
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statistically analyzed with a linear mixed-ef-
fects model for the factors surface treatment,
material type, and aging, together with their
first-degree interactions (a=0.05).

Results: The lowest bond strengths were ob-
tained in the absence of any surface treatment
(group 1), while the highest lTBSs were ob-
tained when the surface was roughened by
either SB or HF, this in combination with
chemical adhesion through Si. Loss in bond
strength was observed after six-month aging
when either surface roughening or silaniza-
tion, or both, were omitted.

Conclusions: Both the composite and polymer-
infiltrated ceramic CAD/CAM blocks appeared
equally bonding-receptive regardless of the
surface treatment used. Creating a microre-
tentive surface by either SB or HF, followed by
chemical adhesion using Si, is mandatory to
maintain the bond strength after six months.

INTRODUCTION

Chairside CAD/CAM restorations have become
increasingly popular in the latest decade thanks
to recent improvements in CAD/CAM technology,
which increased the ease of use and cost effective-
ness of the restorations. Recently, new types of
blocks containing either composite or both a
polymeric and ceramic phase have been developed.1

Cerasmart (GC, Tokyo, Japan) is a ‘composite’
block that consists of evenly dispersed ceramic
nanoparticles (71 vol%) in a polymeric matrix,2

providing a high flexural strength3 and modulus of
resilience.1 Enamic (Vita Zahnfabrik, Bad Säck-
ingen, Germany) is a so-called ‘polymer-infiltrated
ceramic’ and presents a three-dimensionally inter-
connected pre-sintered ceramic network of 86 vol%
that is infiltrated with a monomer mixture; thus,
intertwined networks of polymers and ceramics are
created.4-6 The polymeric network is thought to
render the material less brittle than classic
ceramics, as inferred from its higher Weibull
modulus.7,8

To be clinically successful, adequate adhesion of
the restoration is very important. It has been
shown9-11 that surface treatment prior to cementa-
tion can enhance the bond strength to indirect
restorations. Micromechanical retention can be
provided through sandblasting or acid etching, while
a silane coupling agent provides chemical bonding.11

Different strategies are preferred depending on the
material’s characteristics.12

However, information about bonding protocols to
new composite and polymer-infiltrated ceramic ma-
terials is scarce.13-15 In a previous study,14 it was
suggested that bonding strategies were material-
dependent. Therefore, the objective of this study was
to evaluate the effect of different surface treatments
on the bond strength of a self-adhesive composite
cement to new CAD/CAM blocks. The null hypoth-
eses were that 1) material type, 2) surface treatment,
and 3) aging did not have an influence on the
microtensile bond strength (lTBS) to either a
composite or polymer-infiltrated ceramic CAD/CAM
block.

METHODS AND MATERIALS

The experimental procedure is schematically illus-
trated in Figure 1, and all of the materials that were
used are listed in Table 1. Two types of CAD/CAM
blocks (Cerasmart [CER], GC; and; Enamic [ENA],
Vita Zahnfabrik) of 12 3 14 3 18 mm were sectioned
using a diamond blade in slabs of 4-mm thickness
and wet-polished with 600-grit silicon carbide paper
for 30 seconds. Thirty-six slabs of each CAD/CAM
material were selected and ultrasonically cleaned for
five minutes in distilled water to remove surface
contaminants. For each block type, the specimens
were randomly divided into six groups of six 4-mm
slabs in accordance with the surface treatment, as
follows:

� Group 1: No surface treatment (NT).
� Group 2: Sandblasting (SB): the surface was

sandblasted with 27-lm aluminum-oxide (Al2O3)
particles perpendicular to the surface from a
distance of 10 mm over the course of 20 seconds
with a pressure of 0.28 MPa. Remaining particles
were removed using a gentle air-blow for five
seconds.
� Group 3: Sandblasting þ silane (SB/Si): the surface

was sandblasted following the same protocol as in
group 2, and then a thin layer of a silane coupling
agent (Ceramic Primer II, GC) was applied using a
disposable microtip applicator. After 60 seconds,
the surface was dried with an air syringe.
� Group 4: Sandblasting þ silane þ flowable com-

posite (SB/Si/FLO): the surface treatment and
silanization were carried out following the same
protocol as in group 3; however, a flowable
composite was used as luting agent.
� Group 5: Hydrofluoric acid etching þ silane (HF/

Si): the surface was etched with 5% hydrofluoric
acid (HF; IPS Ceramic Etching Gel 5%, Ivoclar
Vivadent, Schaan, Liechtenstein) for 60 seconds
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and thoroughly rinsed by water spray for 60
seconds. Then the surface was cleaned ultrasoni-
cally in distilled water for five minutes and air-
dried for 20 seconds. Silane was applied following
the same protocol as in group 3.
� Group 6: Phosphoric acid etching þ silane (H3PO4/

Si): surface etching with 37% phosphoric acid
(Total Etch, Ivoclar Vivadent) for 60 seconds,
followed by water rinsing for 60 seconds and air-
drying for 20 seconds. Silane was applied following
the same protocol as in group 3.

Three pairs of 4-mm CAD/CAM slabs (1231434
mm) from the same CAD/CAM block material and
the same group were luted together (3 sandwich
specimens per group; n=3) using a self-adhesive
composite cement (G-CEM LinkAce, GC), whereas a
light-cured flowable composite (G-ænial Universal
Flo, GC) was used to lute the slabs of group 4 (SB/Si/
FLO). The cementation was performed under a
constant weight of 1 kg over the course of 10
minutes. The excess luting agent was removed with
a microtip applicator, and the cementation line was
covered with a glycerin gel (Liquid Strip, Ivoclar
Vivadent) in order to prevent the formation of an
oxygen-inhibited layer. After the initial five minutes,

the sandwich specimens were light-cured from each
side for 40 seconds using a LED light-curing unit
(Prima Light, GC) with an output of ;1600 mW/cm2,
as measured by the MARC Patient Simulator (Blue-
Light Analytics, Halifax, NS, Canada). Specimens
were stored in 0.5% chloramine solution for three
weeks at 378C. Next, each sandwich specimen was
sectioned perpendicularly to the luting interface
using an automated water-cooled diamond saw
(Accutom-50, Struers, Ballerup, Denmark) to obtain
up to six microspecimens (1.731.738 mm). Each
microspecimen was trimmed at the interface to a
dumbbell shape (1.160.1 mm diameter) with a
cylindrical extrafine-grit (15 lm) diamond bur fixed
in a water-cooled high-speed handpiece mounted in a
computer-controlled lathe (MicroSpecimen Former,
University of Iowa, Iowa City, IA, USA). Next, the
cross-sectional diameters of the dumbbell-shaped
specimens were measured with an X-Y multipurpose
modular measuring microscope equipped with a
digital readout (Leitz VRZ-U, Wetzlar, Germany) to
an accuracy of 0.001 mm. One half of the micro-
specimens were stored in 0.5% chloramine at 378C
for three weeks and the other half during six months
before testing. Upon testing, they were attached to a

Figure 1. Scheme explaining the study set. Standardized 4-mm slabs were cut from two types of CAD/CAM block materials and filled according to
the respective experimental conditions, resulting in 2 (material) 3 6 groups (surface treatment and silanization). Microspecimens were prepared and
stressed until failure after three weeks and six months. SB: sandblasting with 27-lm Al2O3; Si: silane; HF: 5% hydrofluoric acid; H3PO4: 37%
phosphoric acid; SAC: self-adhesive composite cement; FLO: flowable composite.
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notched BIOMAT jig16 with cyanoacrylate glue
(Model Repair II Blue, Dentsply-Sankin, Tochigiken,
Japan) and stressed until failure in a universal
testing device (Instron 5848 Micro Tester, High
Wycombe, Bucks, UK) at a crosshead speed of 1
mm/min, using a load cell of 500 N. When a specimen
broke during the trimming procedure, it was
recorded as a pretesting failure (ptf). Microtensile
bond strength data (lTBS per microspecimen in
MPa) were statistically analyzed using a linear
mixed-effects model. Fixed effects included in the
model were the factors ‘surface treatment’ (groups 1
to 6), ‘material type’ (CER vs ENA), and ‘aging’ or
storage period (three weeks vs six months), along
with their first-degree interactions. The sandwich
blocks were added to the model as a random factor to
account for the multiple testings per block. In
addition, to evaluate the six-month results more
profoundly, specific contrasts, along with a p-value
corrected for the amount of tests, were calculated in
order to compare the six-month results to their
respective negative (group 1: NT) and positive (group
3: SB/Si) control. Group 3 (SB/Si) was selected as the

positive control as a result of the considerable

polymer phase of both materials. All tests were

performed at a significance level of a = 0.05 using a

software package.17

The mode of failure was assessed using scanning

electron microscopy (SEM; JSM-6610LV SEM, Jeol,

Tokyo, Japan) at a magnification of 703, and failures

were classified as either ‘interfacial’ (between the

luting agent and the CAD/CAM block material and/

or within the luting agent) or ‘mixed’ (involvement of

both interfacial fracture and cohesive fracture

within the CAD/CAM block substrate). Additional

CAD/CAM block slabs were prepared following the

previous surface treatment protocols (NT, SB, HF,

and H3PO4) in order to morphologically analyze the

surface topography using SEM. Specimens were

mounted on aluminum stubs with adhesive carbon

tape (PELCO Carbon Conductive Tape, Ted Pella

Inc, Redding, CA, USA) and sputter-coated with

gold-palladium by means of a sputter-coater (JFC-

1300 Autofine Coater, Jeol) under a chamber

pressure of 30 mA/Pa for 120 seconds. Specimens

Table 1: Materials Used in This Study

Materials Composition Batch No.

Composite CAD/CAM block Cerasmart, GC, Tokyo, Japan �Silica (20 nm) and barium glass (300 nm)
nanoparticles (71 wt.%)
�Polymers (29%) of Bis-MEPP, UDMA, and
DMA

1403101

Polymer-infiltrated CAD/CAM block Enamic, Vita Zahnfabrik, Bad
Säckingen, Germany

�Feldspar ceramic reinforced by oxides (86
wt.%)
�Polymers (14%) of UDMA and TEGDMA

53570

Luting agents G-CEM LinkAce, GC �Paste A: UDMA 10%-20%, Y-
methacryloxypropyltrimethoxysilane .2.5%
�Paste B: UDMA 25%-50%,
methacryloxypropyltrimethoxysilane .2.5-10%,
A,a-dimethylbenzylhydroperoxide

1401151

G-ænial Universal Flo, GC �Matrix: UDMA, Bis-MEPP, TEGDMA
�Fillers (69 wt.%): silicon dioxide (16 nm) and
strontium glass (200 nm)
�Others: pigments, photoinitiator

1312072

Silane Ceramic Primer II, GC 90%-100% ethanol, 1%-5% 2,20-ethylene
dioxydiethyl dimethacrylate, 1%-5%
methacryloyloxydecyl dihydrogen phosphate,
,1% (1-methylethylidene) bis[4,1-
phenyleneoxy(2-hydroxy-3,1- propanediyl)]
bismethacrylate

14011222

Hydrofluoric acid (HF) IPS Ceramic Etching Gel 5%,
Ivoclar Vivadent, Schaan,
Liechtenstein

Aqueous solution of hydrofluoric acid (,5%) S51072

Phosphoric acid (H3PO4) Total Etch 37%, Ivoclar Vivadent Phosphoric acid (37%), water, S29080

Sandblasting particles Aluminum-oxide 27-lm, Danville
Materials, San Ramon, CA, USA

Aluminum-oxide 27-lm particles 28482

Abbreviations: Bis-MEPP, bisphenol A ethoxylate dimethacrylate; TEGDMA, triethylene glycol dimethacrylate; UDMA, urethane dimethacrylate.
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were observed under SEM at an accelerating voltage
of 15 kV and a working distance of 11.0 mm.

RESULTS

The lowest bond strengths were obtained in the
absence of any surface treatment (Table 2). No
effect was found for the ‘material type’ (p=0.97),
while significant effects of the factors ‘surface
treatment’ (p,0.0001) and ‘aging’ (p,0.0001) were
found. A highly significant interaction between
surface treatment and aging (p,0.0001) was found
as well. After three-week storage, there were no
significant differences in lTBS values between the
experimental groups. After six months, any surface
treatment (groups 2-6) resulted in significantly
higher bond strengths than were noted in the
negative control (group 1: NT), which didn’t receive
any treatment (Figure 2). However, when silaniza-
tion was omitted (group 2: SB), the results were
significantly lower than those of the positive control
(group 3: SB/Si) when both sandblasting and
silanization were applied. Substituting the sand-
blasting for etching with HF (group 5: HF/Si) or
substituting the self-adhesive composite cement for
a flowable composite (group 4: SB/Si/FLO) rendered
results that were not significantly different from
that of the positive control (group 3: SB/Si). In
contrast, substituting the sandblasting for etching
with H3PO4 (group 6: H3PO4/Si) was not sufficient
and resulted in a significant decrease in bond
strength in comparison with that of the positive
control (group 3: SB/Si).

SEM analysis of the surface treatments demon-
strated that the untreated surface of CER had a
smoother appearance than that of ENA. While
roughening effects could be seen for both types of
CAD/CAM blocks after SB and HF (Figure 3),
surface treatment with H3PO4 did not result in a
visible morphological difference. SB resulted in an
irregular, rugged surface in both CAD/CAM block
materials, while HF created porelike holes in the
surface of CER, having dissolved the silica and
barium-glass nanoparticles, but resulted in a more
rugged appearance when dissolving the feldspathic
ceramic network of ENA (Figure 3). Failure
analysis demonstrated a higher prevalence of
mixed fractures with ENA than with CER (Table
2; Figure 4).

DISCUSSION

This in vitro study was designed to investigate the
effect of various surface treatments on the adhesion
of a dual-cure, self-adhesive composite cement to two
novel CAD/CAM block materials after two storage
times. Despite inherent differences in surfaces
(Figure 3), no differences in bond strength to CER
vs ENA were found (Table 2); thus, the first null
hypothesis was accepted. Qualitative analysis using
SEM showed that the untreated surface of ENA was
rougher than the surface of CER (Figure 3); this
might explain why there were fewer pretesting
failures in ENA/NT than in CER/NT after six
months (Table 2), although this difference was not
significantly different (p=0.084).

Table 2: lTBS Results

Group Surface
Treatment

Silane Luting
Agent

Material 3-wk Storage 6-mo Storage

Mean (SD) ptf/n Mixed Failure/
Interfacial
Failure, %

Mean (SD) ptf/n Mixed Failure/
Interfacial
Failure, %

1 NT No SAC Cerasmart 40.5 (11.5) 0/15 3/97 0.9 (3.0) 16/18 3/97

Enamic 40.5 (13.7) 0/15 17/83 10.4 (9.5) 3/18 3/97

2 SB No SAC Cerasmart 47.7 (20.2) 0/17 12/88 32.6 (8.1) 0/17 3/97

Enamic 56.8 (16.3) 0/16 15/85 23.2 (13.8) 2/18 22/78

3 SB Yes SAC Cerasmart 53.3 (18.2) 0/16 13/88 48.2 (9.6) 0/17 17/83

Enamic 48.1 (14.9) 0/17 38/62 58.8 (19.7) 0/18 47/53

4 SB Yes FLO Cerasmart 48.2 (20.5) 0/18 6/94 48.4 (16.9) 0/17 17/83

Enamic 52.8 (17.8) 0/17 22/78 41.2 (13.2) 0/13 31/69

5 HF Yes SAC Cerasmart 50.8 (11.3) 0/18 14/86 50.0 (18.4) 0/15 17/83

Enamic 53.0 (21.6) 0/18 33/67 52.9 (7.1) 0/14 44/56

6 H3PO4 Yes SAC Cerasmart 40.2 (16.4) 0/17 9/91 30.0 (11.2) 0/18 11/89

Enamic 48.7 (14.8) 0/16 24/76 26.0 (15.6) 2/14 22/78

Abbreviations: FLO: flowable composite; HF: etching with 5% hydrofluoric acid; H3PO4: etching with 37% phosphoric acid; n: number of microspecimens; NT: no
treatment; ptf: pre-testing failures; SB: sandblasting with 27-lm Al2O3; SAC: self-adhesive composite cement; SD: standard deviation.
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Figure 2. Boxplots of the lTBS results. The box represents the spreading of the data between the first and third quartile. The central horizontal line
and the black dot represent the median and mean, respectively. The whiskers extend to the minimum and maximum values measured, with the
exception of the outliers that are represented with open dots (8). CER: Cerasmart; ENA: Enamic; NT: no treatment; SB: sandblasting with 27-lm
Al2O3; Si: silane; HF: 5% hydrofluoric-acid etching; H3PO4: 37% phosphoric-acid etching; SAC: self-adhesive composite cement; FLO: flowable
composite. Significant differences are based on linear mixed-effects models at a significance level of p=0.05.

Figure 3. SEM photomicrographs of pretreated surfaces. CER: Cerasmart (GC); ENA: Enamic (Vita Zahnfabrik); NT: no treatment; SB: sandblasting
with 27-lm Al2O3; HF: 5% hydrofluoric-acid etching; H3PO4: 37% phosphoric-acid etching. Original magnification: 50003.
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It must be noted that the CER used in this study
contains etchable barium-glass particles and has a
lower hardness3 as opposed to the zirconia-contain-
ing composite CAD/CAM block material used in
previous studies.14,15 As a consequence, CER is more
susceptible to mechanical roughening and acid
etching.18 It is clear that differences within material
classes must be interpreted with caution19 and that
those findings cannot be generalized to all composite
CAD/CAM block materials.

Both surface treatment and storage period (aging)
had a significant influence on bond strength, with a
significant interaction between both factors
(p,0.001); hence, the second and third null hypoth-
eses were rejected. Overall, high levels of bond
strength were found after only three weeks of water

storage (Table 2). Differences between the surface

treatments only manifested after a longer water

storage period, which affected the bond strength,

depending on the surface treatment. The lowest

bond strengths were obtained in the absence of any

surface treatment (group 1: NT), which became

apparent after six-month storage. After this period

of six months, any surface treatment resulted in a

higher bond strength in comparison with the

negative control NT (Figure 2). However, when

compared to group 3 (SB/Si), which served as a

positive control, SB alone (group 2) resulted in

significantly lower bond strengths (Figure 2). This

shows that the silanization step is crucial to

maintain an optimal adhesion, which was also

demonstrated for conventional ceramics20,21 and

Figure 4. SEM photomicrographs of lTBS-fractured surfaces. CER: Cerasmart (GC); ENA: Enamic (Vita Zahnfabrik); NT: no treatment; SB:
sandblasting with 27-lm Al2O3; HF: 5% hydrofluoric-acid etching; H3PO4: 37% phosphoric-acid etching; Si: silane; FLO: flowable composite. White
arrows: interfacial failure at the composite cement. Black arrows: mixed failure with involvement of CAD/CAM block substrate. Note that more mixed
failures occurred within the CAD/CAM block substrate with ENA than with CER. Original magnification: 703.
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indirect composites.22,23 Despite the presence of
polymers in both CAD/CAM block materials, their
inorganic content remained relatively high so that
the extra coupling provided by the silane between
the inorganic and polymer constituents of the luting
agent enhanced the bond strength.24 However,
mechanical roughening is also necessary; in group
6 (H3PO4/Si), H3PO4 was not strong enough to
induce visible surface roughening, and despite
silanization lower bond strengths were obtained
than in the positive control group 3 (SB/Si). Similar
results have been found for conventional ceram-
ics,11,25 composites,26 and polymer-infiltrated ceram-
ics.27 Surface roughness of the H3PO4-etched surface
was similar to that of the untreated surface, but it is
thought to have a cleaning effect.18,27 H3PO4 might
be preferred over HF as a surface treatment for
intraoral repair because of the potential hazards of
the latter material28; however, based on these
results, it can be concluded that bonding in the long
term might be compromised in the absence of
sufficient micromechanical retention.

Fracture analysis revealed that the majority of
specimens failed at the interface, which indicates
that the stress was concentrated in this area during
the tensile test.29 More mixed failures, with large
parts of cohesive fractures in the substrate, were
seen for ENA; this might be a result of the inherent
higher brittleness of this material in comparison
with the more resilient CER. Indeed, it has been
shown1 that ENA has a lower flexural strength than
CER. Flexural strength is closely related to tensile
strength, and this might explain why failures
propagated more often through the substrate in
ENA.

A dual-cure, self-adhesive composite cement (G-
CEM LinkAce, GC) was used to lute all of the
specimens, except for those of group 4 (SB/Si/FLO),
for which a light-curing flowable composite (G-ænial
Universal Flo) was used as luting agent. Interest-
ingly, the latter was found to be equally effective as
the dual-cure composite cement with both CAD/CAM
block materials (Figure 2). It must be kept in mind,
however, that in this case the sandwich specimens
were extensively light-cured from each side and that
as a result of the flat interface of the specimens, a
beneficial ratio between the circumference—which
can be exposed directly to the light—and intaglio
surface was created. To extrapolate this finding to
clinical situations, however, more studies regarding
the degree of conversion of these composites under
composite/ceramic restorations of various thickness-
es are necessary.

CONCLUSIONS

Both the composite and polymer-infiltrated ceram-
ic blocks performed equally well regardless of
surface treatment. As previously shown for other
indirect CAD/CAM materials,13,20,30-33 creating a
microretentive surface by either sandblasting or
hydrofluoric-acid etching, followed by silanization
for chemical adhesion, is mandatory to maintain
the bond strength upon water storage for six
months.
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28. Özcan M, Allahbeickaraghi A, & Dündar M (2012)
Possible hazardous effects of hydrofluoric acid and
recommendations for treatment approach: A review
Clinical Oral Investigations 16(1) 15-23, doi:10.1007/
s00784-011-0636-6.

29. Scherrer SS, Cesar PF, & Swain MV (2010) Direct
comparison of the bond strength results of the different
test methods: A critical literature review Dental Materi-
als 26(2) e78-e93, doi:10.1016/j.dental.2009.12.002.

30. Lise DP, Perdigão J, Van Ende A, Zidan O, & Lopes G
(2015) Microshear bond strength of resin cements to
lithium disilicate substrates as a function of surface
preparation Operative Dentistry 40(5) 524-532, doi:10.
2341/14-240-L.

31. Nagai T, Kawamoto Y, Kakehashi Y, & Matsumura H
(2005) Adhesive bonding of a lithium disilicate ceramic
material with resin-based luting agents Journal of Oral
Rehabilitation 32(8) 598-605, doi:10.1111/j.1365-2842.
2005.01464.x.

32. Spohr A, Sobrinho L, Consani S, Sinhoreti M, & Knowles
J (2003) Influence of surface conditions and silane agent
on the bond of resin to IPS Empress 2 ceramic
International Journal of Prosthodontics 16(3) 277-282.

33. Kalavacharla V, Lawson N, Ramp L, & Burgess J (2014)
Influence of etching protocol and silane treatment with a
universal adhesive on lithium disilicate bond strength
Operative Dentistry 40(4) 372-378, doi:10.2341/14-116-L.

Lise & Others: lTBS to CAD/CAM Blocks 81

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-31 via free access


