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Microleakage and Shear Bond
Strength of Composite Restorations
Under Cycling Conditions
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Clinical Relevance

The performance of composite restorations can be affected by frequent acid attacks.

SUMMARY

Objectives: The aim of this study was to eval-
uate microleakage and shear bond strength of
composite restorations under different cycling
conditions.
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Methods and Materials: Class V cavities were
prepared in the buccal and lingual surfaces of
30 human molars (n=60). A further 60 molars
were used to prepare flat enamel and dentin
specimens (n=60 each). Cavities and specimens
were divided into six groups and pretreated
with an adhesive (self-etch/Clearfil SE Bond or
etch-and-rinse/Optibond FL). Composite was
inserted in the cavities or adhered to the
specimens’ surfaces, respectively, and submit-
ted to cycling (control: no cycling; thermal
cycling: 10,000 cycles, 5°C to 55°C; thermal/
erosive cycling: thermal cycling plus storage in
hydrochloric acid pH 2.1, 5 minutes, 6x/day, 8
days). Microleakage was quantified by stereo-
microscopy in enamel and dentin margins
after immersion in silver nitrate. Specimens
were submitted to shear bond strength testing.
Statistical analysis was done by two-way anal-
ysis of variance and Kruskal-Wallis tests
(p<0.05).

Results: Microleakage in enamel margins was
significantly lower in the control group com-
pared with thermal cycling or thermal/erosive
cycling. Erosive conditions increased micro-
leakage compared with thermal cycling (sig-
nificant only for Clearfil SE Bond). No
significant differences were observed in den-
tin margins. Bond strength of enamel speci-
mens was reduced by thermal cycling and
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thermal/erosive cycling when Clearfil SE Bond
was used and only by thermal/erosive cycling
when Optibond FL was used. No differences
were observed among dentin specimens.

Conclusions: Thermal/erosive cycling can ad-
versely affect microleakage and shear bond
strength of composite resin bonded to enamel.

INTRODUCTION

Erosive tooth wear often requires restorative treat-
ment due to hypersensitivity or esthetic or functional
limitations when a certain degree of substance loss is
reached. As restorative materials and adhesive
techniques have been significantly optimized over
the past decades, the restoration of even severely
eroded teeth using minimally invasive procedures
has become possible. While minimal loss of tooth
substance can be protected from further progression
by sealant application,’™ distinct defects can be
restored by composite, resin polymer, or ceramic
restorations after minimal or even no preparation.*®

Some researchers have purported that adhesion to
eroded dental hard tissues might be more difficult to
achieve than adhesion to sound enamel and dentin.
While only few studies showed that erosion of tooth
surfaces does not jeopardize enamel® or dentin'®
bonding, most experiments have found a reduced
bond strength of adhesives to eroded dental hard
tissues.'' ' However, both adhesion to erosively
affected dental hard tissues and the performance of
dental restorations under ongoing erosive conditions
are of clinical relevance, in cases where a causal
therapy of erosive tooth wear cannot be achieved
before restoration placement. While several studies
have investigated the acid-resistance of different
restorative materials per se,!”?2 only a few studies
have analyzed the effect of erosive attacks on dental
restorations.?>?* These studies reported some sur-
face erosion of enamel adjacent to cement and
composite restorations but did not analyze potential
effects on the adhesive interface, for example on
microleakage or bond strength of composite restora-
tions.?>?* Studies on secondary caries development
have shown that the application of self-etching
adhesives with specific functional monomers, for
example 10-methacryloyloxydecyl dihydrogenphos-
phate (MDP), leads to the formation of a so-called
acid-base resistant zone beneath the dentinal hybrid
layer?® or at the enamel-bonding interface.?® This
zone is more resistant to acid and base challenges
than the underlying dental hard tissue and might
prevent caries development at the tooth-restoration
interface. However, the acid challenge of the inter-
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face was usually performed with buffer solutions at
pH 4.5%°27 and no information is currently available
on the acid resistance of the interface when the
demineralizing agent is significantly more acidic, as
with erosive solutions.

Therefore, this study aimed to investigate the
effect of erosive cycling on the adhesive performance
of an etch-and-rinse and a self-etch adhesive by
investigating microleakage and shear bond strength
of composite restorations. The null hypothesis tested
was that erosive challenges do not influence micro-
leakage in enamel and dentin margins of Class V
restorations and do not affect shear bond strength of
self-etch and etch-and-rinse adhesive systems to
enamel and dentin.

METHODS AND MATERIALS
Cavity and Specimen Preparation

Ninety sound human third molars were collected
after approval of the local ethics committee (No:
1.190.857), cleaned, and stored in distilled water
under refrigeration for less than 3 months.

Thirty teeth were selected for microleakage anal-
ysis, and Class V cavities (4 mm in diameter and 1.5
mm in depth) were prepared in the cervical region of
the buccal and lingual surfaces using wheel-shaped
diamond burs (#909 ISO040, Maxima, Gillingham,
United Kingdom) in an air/water cooled high-speed
handpiece. Each bur was replaced after five prepa-
rations. The cavity margins were located in enamel
and dentin as the gingival cavosurface margins were
placed 2 mm below the cementoenamal junction. The
enamel surface was beveled 0.5 mm using a flame-
shaped diamond bur (#832.014 EF, Komet, Gebr.
Brasseler, Lemgo, Germany). The cavity size (4 mm
X 1.5 mm) was checked with a periodontal probe. The
teeth were randomly assigned into six groups (n=>5
teeth, each with two cavities, one for each adhesive
used).

For shear bond strength analysis, the roots of the
remaining 60 teeth were removed and the crowns cut
in a mesial-distal direction. The specimens were
embedded in acrylic resin (Paladur, Heraeus Kulzer,
Hanau, Germany), and subsequently, the buccal or
lingual surfaces were flattened with water-cooled
silicon carbide discs (#600 grit, Water Proof Silicon
Carbide Paper, Struers, Ballerup, Denmark) until an
area with diameter of at least 3 mm in enamel
(n=60) or dentin (n=60) was exposed. The specimens
were randomly assigned to six test groups (each
n=10 enamel and n=10 dentin specimens) according
to the adhesive (etch-and-rinse or self-etch adhesive)
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Table 1:  Products, Manufacturers, Batch Numbers, Chemical Compositions and Application Instructions for the Materials Tested

Material

Composition

Application Protocol

Clearfil SE Bond 2 Self-etch
(Kuraray, Okayama, Japan)

Primer (batch: 2B0133): 10-MDP, HEMA,
hydrophilic dimethacrylate, N,N-diethanol-p-
toluidine, di-camphorquinone, water.

Primer applied over tooth substrate actively
for 20 s, followed by gentle air-dry for solvent
evaporation. Then, application of a thin layer

colloidal silica

Bond (batch: 2901214): 10-MDP, BIS-GMA,
HEMA, hydrophobic dimethacrylate, N,N-
diethanol-p-toluidine, di-camphorquinone, silanated

of Bond and light curing for 10 s.

Optibond FL Etch & Rinse (Kerr,
Orange, CA, USA)

Primer (batch: 5086326). HEMA, PAMM, GPDM,
ethanol, water, photoinitiator

Phosphoric acid etching for 30 s in enamel
and 15 s in dentin, followed by rinsing with

Bond (batch: 5417219): TEG-DMA, UDMA,
GPDM, HEMA, BIS-GMA, filler, photoinitiator

water spray for 30 s. Primer applied over
tooth substrate actively for 15 s, followed by
gentle air-dry for 5 s to solvent evaporation.
Then, application of a thin layer of bond and
light-curing for 20 s.

Filtek Supreme XTE (3M ESPE,
St Paul, MN, USA)

Monomer: UDMA, BIS-GMA TEG-DMA, BIS-EMA

Application in increments of 2 mm, each
followed by light curing for 20 s.

Filler. 58% volume/volume aggregated zirconia/
silica cluster filler and nonagglomerated/
nonagregated silica filler. (batch: N669171)

EMA, bisphenol A ethoxylate dimethacrylate.

Abbreviations: MDP, 10-methacryloyloxydecy! dihydrogenphosphate; HEMA, 2-hydroxyethyl methacrylate; BIS-GMA, bisphenol A glycidyl methacrylate; PAMM,
phthalic acid monoethyl methacrylate; GPDM, glycerylphosphate dimethacrylate; TEG-DMA, triethylene glycol dimethacrylate. UDMA, urethane dimethacrylate. BIS-

and cycling conditions (no aging/control, thermal
cycling or thermal/erosive cycling) used.

Material Application and Aging Conditions

The cavities (for microleakage analysis) or speci-
mens (for shear bond strength analysis), respective-
ly, were treated with an etch-and-rinse adhesive
(Optibond FL, Kerr, Orange, CA, USA) or a self-etch
adhesive (Clearfil SE Bond 2, Kuraray, Okayama,
Japan). For the etch-and-rinse technique, 35%
phosphoric acid (Ultra-Etch, Ultradent Inc, South
Jordan, UT, USA) was applied onto enamel and then
extended to dentin, resulting in 30 seconds of enamel
etching and 15 seconds of dentin etching. The
adhesives were applied according to the manufac-
turer’s recommendations (Table 1) and light cured
(800 mW/cm?, Optima 10, B.A. International, North-
ampton, United Kingdom).

Class V cavities were restored with a composite
(Filtek Supreme XTE, shade A2, 3M ESPE, St Paul,
MN, USA; Table 1) in increments of 2 mm, each
light-cured for 20 seconds. After 24 hours, the
restorations were finished with a sequence of
polishing disks (Sof Lex Pop-On, 3M ESPE) in
decreasing roughness.

For shear bond strength analysis, composite was
adhered on the enamel or dentin surfaces. After
adhesive application, a Teflon split mold (3 mm in
diameter, 2 mm in height) was used on the surface,
the composite packed against the surface and then

light-cured for 20 seconds. After light-curing, the
Teflon mold was split and removed.

In the control group, microleakage and shear bond
strength analyses were performed after 24 hours of
water storage in distilled water. The remaining
specimens were submitted to thermal cycling
(10,000 cycles, 5/55° C, with a dwell time of 25
seconds and a transfer time of 5 seconds) or thermal/
erosive cycling (thermal cycling plus intermittent
immersion in hydrochloric acid at room temperature,
pH 2.1, six times a day for 5 minutes with an interval
of 90 minutes between the acid immersions). The
thermal cycling regimen lasted for 8 days, so that the
erosive cycling lasted a total of 4 hours.

Microleakage Analysis

The root apices of the teeth were sealed with
composite resin (Filtek Supreme XTE) and then
coated with two layers of nail polish leaving an area
of 1 mm around the margin interface uncoated. The
teeth were immersed in 25% volume/volume AgNO3
for 12 hours, followed by immersion in a photo-
developing solution (GBX Developer and Replenish-
er, Carestream Dental, Atlanta, GA, USA) for 8
hours under ultraviolet light.

The teeth were rinsed under running water for 5
minutes and cut in four parallel slices of 1-mm
thickness in a buccal-lingual direction, parallel to
the tooth long axis. Slices were analyzed under the
stereomicroscope with 25X magnification (Carl Zeiss
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Figure 1. Failure pattern type and distribution.(A) Schematic drawing of the failure patterns. Adhesive: failure in the adhesive interface; mixed <50%:
failure in the composite, with <50% of its total area; mixed >50%: failure in the composite, with >50% of its area,; cohesive-tooth: failure affecting the
substrate (enamel/dentin) and cohesive-composite: failure affecting only the composite. (B) Failure distribution of enamel and dentin specimens. No

cohesive failures were observed in composite.

Inc, Berlin, Germany), and images were taken by a
digital camera (Moticam 2.0, Motic, Hong Kong). The
penetration of silver nitrate was measured using the
software AxioVision LE 2013 (Carl Zeiss Inc). Data
were expressed in percentage of penetration using
the formula: %p = [P / L] * 100, where %p is the
percentage of penetration, P is the length of the
margin where the silver penetrated and L is the total
length of enamel/composite or dentin/composite
interface.

Additionally, one specimen from each group was
randomly chosen and used for scanning electron
microscopy (SEM) of the surface margins. Before
immersion in the AgNOj solution, impressions were
made using polyvinylsiloxane (President Light Body,
Coltene, Altstiatten, Switzerland), followed by a
preparation of the epoxy replicas (EpoFix, Struers,
Ballerup, Denmark). The epoxy resin was placed
under vacuum for 20 minutes and cured in a
desiccator for 24 hours to avoid the formation of
bubbles. Replicas were sputtered with palladium-
platinum, and SEM analysis (ULTRA Plus FE-SEM,
Carl Zeiss Inc, Oberkochen, Germany) was per-
formed at 200X magnification.

Shear Bond Strength Analysis

Shear bond strength was tested with a universal
testing machine (Z010, Zwick GmbH & Co, Ulm,
Germany). A shear force was applied to the enamel-
composite or dentin-composite interface, respective-
ly, through a chisel-shaped loading device positioned
parallel to the enamel or dentin surface at a
crosshead speed of 1 mm/min. Shear bond strength
(o) was calculated using the load at failure F (N) and
the adhesive area A (mm?): o (MPa) = F/A. The
debonded area was examined with a stereomicro-
scope (Carl Zeiss Inc.) at 25X magnification, and the
failure modes were classified into one of four
categories: adhesive, if it occurred in the adhesive
interface; mixed <50%, if occurred in the composite
with <50% of the total area adhered to the tooth
substrate; mixed >50% if occurred in the composite
with >50% of the total area adhered to the tooth
substrate; and as cohesive-tooth if the failure
affected only the dental substrate (enamel or dentin)
or cohesive-composite if the failure affected only the
composite. Figure 1A shows a schematic drawing of
the failure modes.
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Table 2: Microleakage (Percent of Silver Penetration, Means and Standard Deviations) of Enamel and Dentin Margins 2

Enamel Dentin
Clearfil SE Bond Optibond FL Clearfil SE Bond Optibond FL
Control 10.3 + 13.4"2 8.9 + 11.0" 56.0 = 33.5%° 61.5 = 34.42
Thermal cycling 456 + 21.8°° 31.3 = 13.3%° 65.8 = 30.2°° 68.0 = 24.4%2
Thermal/erosive cycling 715 = 12.6%° 412 + 19.5%° 88.6 = 11.5"° 77.2 + 20.5%2

the aging conditions.

@ Separately for enamel and dentin, different uppercase letters show differences between the adhesives, while lowercase letters show significant differences between

Statistical Analysis

Means and standard deviations were determined for
each subgroup. Normal distribution was tested by
the Kolmogorov-Smirnov test.

Microleakage data were normally distributed for
enamel but not for dentin, so two-way analysis of
variance (ANOVA) followed by Tukey tests were
applied to the enamel data, while the Kruskal-Wallis
test was used to analyze the dentin data. As shear
bond strength data were normally distributed, two-
way ANOVAs followed by Tukey tests were applied
separately for enamel and dentin. Considering the
kind of tooth substrate and the kind of adhesive
used, a 32 test was applied to compare the failure
patterns in the different aging subgroups. The level
of significance was set at 5%.

RESULTS
Microleakage

Microleakage of Class V restorations is presented in
Table 2. For enamel, the type of adhesive (p<<0.0001),
the cycling condition (p<<0.0001), and the interaction
between factors (p=0.004) were significant with
respect to microleakage. Microleakage was signifi-
cantly lower in the control group than in restorations
that were submitted to thermal cycling or thermal/
erosive cycling. Thermal/erosive cycling increased
microleakage compared with thermal cycling, but this
effect was significant only for Clearfil SE Bond. In
dentin, thermal cycling and thermal/erosive cycling
increased microleakage slightly but not significantly.

Examples of surface margins of each group are
shown in Figures 2 through 4. While continuous

Figure 2. SEM figures (x200) showing composite-enamel (A, B) and composite-dentin (C, D) interfaces in the control groups when Clearfil SE Bond

(A, C) or Optibond FL (B, D) was used. In all restorations, continuous margins were found.
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Figure 3. SEM figures (x200) showing composite-enamel (A, B) and composite-dentin (C, D) interfaces in restorations submitted to thermal cycling
when Clearfil SE Bond (A, C) or Optibond FL (B, D) was used. A slight disintegration is visible for Clearfil SE Bond (arrows) compared with the
Optibond FL sample. The box in (A) presents the composite-enamel interface at 2800X magnification.

margins were found in the control groups (Figure 2),
thermal cycling resulted in a slight disintegration of
the restoration performed with Clearfili SE Bond
(Figure 3). Thermal/erosive cycling resulted in a
distinct dissolution of enamel and dentin margins
(Figure 4).

Shear Bond Strength

Shear bond strength values of differently aged
enamel and dentin specimens are presented in Table
3.

For enamel, two-way ANOVA revealed significant
effects of cycling treatment (p<<0.0001) and adhesive
type (p=0.0003) but not for the interaction between
the factors (p=0.641). When Clearfil SE Bond was
used, thermal cycling and thermal/erosive cycling
reduced bond strength significantly compared with
the control, but they were not significantly different
from each other. When Optibond FL was used, only
thermal/erosive cycling reduced shear bond strength
significantly compared with the control, while
thermal cycling led to a nonsignificant reduction of
bond strength.

For dentin, two-way ANOVA revealed no effects of
cycling conditions (p=0.994) or type of adhesive

(p=0.709) on shear bond strength, while the inter-
action of both factors was significant (p=0.043).

The failure distribution is presented in Figure 1.
Independently of the kind of substrate and the kind
of adhesive, y? tests revealed no significantly
different failure patterns among the different cycling
conditions (p=0.15).

DISCUSSION

As thermal/erosive cycling adversely affected micro-
leakage and shear bond strength of enamel but not
dentin, the null hypothesis had to be partially
rejected.

In the present study, two basic techniques to
determine the effect of thermal/erosive cycling on the
adhesive interface were used. Microleakage and
shear bond strength analyses are surrogate param-
eters, which are critically discussed in the litera-
ture,?®? but are still frequently used. As relative
effects of thermal/erosive cycling on the composite-
tooth interface rather than absolute bond strength or
microleakage values were of interest, it seemed
acceptable to apply both methods.

Optibond FL as an etch-and-rinse adhesive and
Clearfil SE Bond as a self-etching adhesive have
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Figure 4. SEM figures (X200) showing composite-enamel (A, B) and composite-dentin (C, D) interfaces submitted to erosive cycling when Clearfil
SE Bond (A, C) or Optibond FL (B, D) was used. Erosive cycling resulted in a distinct surface dissolution of enamel or dentin, respectively, resulting in

a step between composite and the tooth surface.

shown reliable adhesive performance and are con-
sidered benchmarks in their respective classes; they
are known to be quite resistant to aging.?’ Cycling of
enamel specimens resulted in a significant decrease
of bond strength and microleakage, while shear bond
strength and microleakage of dentin specimens were
not significantly changed. Previous studies on the
effect of artificial aging found conflicting results.
Depending on the kind of aging protocol, some
studies showed a significant decrease in bond
strength for Optibond FL or Clearfil SE Bond on
enamel or dentin surfaces after aging,3* while
others did not.?53” Microleakage of composite resto-
rations bonded by Optibond FL or Clearfil SE Bond
mostly increased by aging.®®3° Different in vitro

models to promote the degradation of the adhesive
interface have been described in the literature,
including aging by storage in water or NaOCI,
enzymatic degradation of the organic matrix, ther-
mocycling, pH cycling, or mechanical loading.*® In
the present study, specimens were submitted to
10,000 cycles in water between 5°C and 55°C, which
corresponds approximately to 1 year of in vivo
service.*! Thermal cycling might accelerate hydroly-
sis compared with aging by water storage and induce
repetitive contraction-expansion stress at the tooth/
restoration interface®. Specimens submitted to
thermal/erosive cycling were intermittently stored
in hydrochloric acid at pH 2.1 in addition to thermal
cycling. Hydrochloric acid is commonly used to

Table 3: Shear Bond Strength (MPa, Means and Standard Deviations) of Enamel and Dentin Specimens @

Enamel Dentin
Clearfil SE Bond Optibond FL Clearfil SE Bond Optibond FL
Control 16.2 + 5142 20.0 = 5.3% 14.6 + 55 12.8 + 5.6
Thermal cycling 8.7 + 35" 14,9 + 4,88 11.0 + 3.8%° 16.3 + 5.4°2
Thermal/erosive cycling 6.8 = 2.4 10.6 + 5.4° 14.8 + 5.2 12.8 + 512

the aging conditions.

2 Separately for enamel and dentin, different uppercase letters show differences between the adhesives, while lowercase letters show significant differences between
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simulate intrinsic erosion.*?*3 However, the erosive
cycling can be classified as relatively mild when
considering that the intraoral pH after an acidic
attack is reduced for up to several minutes** and the
total erosion time in the present study lasted for only
4 hours.

As depicted by the SEM pictures, a distinct surface
erosion of enamel and dentin developed at the
marginal interface. The adverse effect of hydrochlo-
ric acid on the marginal interface might increase the
flow of fluids through the adhesive interface ac-
counting for microleakage development and decrease
of bond strength. However, microleakage and shear
bond strength were significantly affected only in
enamel but not in dentin.

Bonding to enamel surfaces is mainly achieved by
a micromechanical interlocking of resin into micro-
porosities of the acid-etched surface. In contrast, the
dentinal hybrid layer is composed of organic matrix,
residual hydroxyapatite crystallites, and resin mono-
mers. As erosion primarily affects the inorganic part
of the dental hard tissue, the effects on enamel
bonding might be more deleterious than on dentin.
Nevertheless, it has taken into account that the
degradation of the organic matrix was not addressed
by the aging protocol of the present study. Consid-
ering that intrinsic erosion is caused by gastric
juices, not only hydrochloric acid but also proteolytic
enzymes of the digestive system (eg, pepsin) come
into contact with teeth. Pepsin is capable of degrad-
ing the organic matrix of dentin, resulting in a
progression of erosive lesions.*?

In this experiment, only slight differences were
found between the adhesive performance of the etch-
and-rinse and the self-etching adhesive. Etch-and-
rinse adhesives usually lead to higher bond strength
values and lower microleakage on enamel than self-
etching adhesives, as phosphoric acid etching in-
creases the porosity of enamel compared with the
mild etching pattern of the Clearfil SE Bond primer,
resulting in an increased micromechanical retention.
Thus, Optibond FL revealed higher bond strength
values and less adhesive failures after thermal
cycling compared with Clearfil SE Bond. On the
other hand, the mildly acidic primer of Clearfil SE
Bond can easily decalcify the less mineralized
dentin. At the same time, MDP can chemically
interact with hydroxyapatite resulting in improved
dentin bonding performance compared with etch-
and-rinse adhesives. In contrast to etch-and-rinse
adhesives, self-etching adhesives with specific func-
tional monomers form an acid-base resistant zone, a
structural layer on the tooth-bonding interface,

Operative Dentistry

which might be responsible for degradation resis-
tance at the interface. Nevertheless, no significant
differences between the performance of the etch-and-
rinse and the self-etching adhesive under thermal/
erosive cycling conditions were seen in the present
study. Further studies should analyze possible
structural changes of the hybrid layer under highly
acidic conditions.

Conclusion

Erosive conditions might adversely affect micro-
leakage development and bond strength of etch-
and-rinse and self-etching adhesives on enamel but
not on dentin.
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