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Endodontic Access Effect on Full
Contour Zirconia and Lithium
Disilicate Failure Resistance
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Clinical Relevance

Although more investigation is required, replacing adhesively luted, all-ceramic yttria-
stabilized zirconium dioxide and lithium disilicate crowns may not be required after
endodontic access.

SUMMARY

Objectives: To evaluate the effect of endodon-
tic access on the failure load resistance of both
adhesively and conventionally luted, full-con-
tour monolithic yttria-stabilized zirconium di-
oxide (Y-TZP) and adhesively luted lithium
disilicate (LD) crowns cemented on prepared
teeth.

Methods and Materials: Seventy-two human
maxillary molars were prepared per respective
guidelines for all-ceramic crowns with one
group (n=24) restored with LD and the other
(n=48) receiving Y-TZP crowns. Preparations
were scanned using computer-aided design/

computer-aided milling (CAD/CAM) technolo-
gy, and milled crowns were sintered following
manufacturer recommendations. All LD
crowns and half (n=24) of the Y-TZP crowns
were adhesively cemented, while the remain-
ing Y-TZP specimens were luted using a con-
ventional glass ionomer cement (GIC). One LD
group, one Y-TZP adhesive group, and one
GIC-luted group (all n=12) then received end-
odontic access preparations by a board-certi-
fied endodontist: the pulp chambers were
restored with a dual-cure, two-step, self-etch
adhesive and a dual-cure resin composite core
material. The access preparations were re-
stored using a nano-hybrid resin composite
after appropriate ceramic margin surface
preparation. After 24 hours, all specimens
were loaded axially until failure; mean failure
loads were analyzed using Mann-Whitney U
test (a=0.05)

Results: Endodontic access did not significant-
ly reduce the failure load of adhesively luted
LD or Y-TZP crowns, but Y-TZP crowns with
GIC cementation demonstrated significantly
less failure load.

Conclusions: These initial findings suggest
that endodontic access preparation may not
significantly affect failure load resistance of
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adhesively luted Y-TZP and LD crowns. Defin-
itive recommendations cannot be proposed
until fatigue testing and coronal seal evalua-
tions have been accomplished.

INTRODUCTION

Full-contour crown restorations are indicated for
teeth that have suffered extensive structure loss
due to trauma and/or disease, with over 54 million
units (crowns, pontics, retainers) reportedly placed
in the United States in 2012.1 Tooth preparation for
a complete crown is not a conservative procedure,
and. depending on the specific situation, crown
preparation may require approximately 24% to 70%
of the existing tooth structure to be removed.2,3

During this procedure, the dental pulp can be
subjected to heat and mechanical trauma,4 and
historically it has been suggested that the dental
pulp may not fully recover from insults (eg, stressed
pulp condition).5 Hence, a potential chronic pulp
inflammation combined with potential insults add-
ed during crown preparation6-9 suggests that vital
teeth receiving full metal and porcelain fused to
metal crown restorations could be more likely to
require future endodontic treatment. Clinical ret-
rospective studies have reporting that crowns
requiring endodontic intervention range from 4%
to 18% compared with control ranges of 0.5% to
2%.10-15 Moreover, greater knowledge of identified
pulp tissue inflammation biological mechanisms
involving heat, mechanical stress, and chemical
insult from resin monomer infiltration4,16-20 that
occur during crown preparation and restoration
adds emphasis to the idea that crown-restored vital
teeth may be more vulnerable to requiring future
endodontic intervention.21-24 Furthermore, an esti-
mated 20% to 50% of nonsurgical root canal
treatments are performed via endodontic access
through crowns,25 and surveys report that up to
72% of clinicians prefer to maintain the repaired
crown as the definitive post-endodontic restora-
tion.26,27 As the maintenance of a coronal seal is
paramount for long-term success of endodontic
treatment,27-37 concern exists due to the present
difficulty with obtaining reliable adhesion and seal
with metal and porcelain materials,35,36 even more
so with high-crystalline ceramic surfaces.37-40

For all-ceramic crowns, retrospective evaluations
report that endodontic intervention ranges from
2.5% to 8.6%.13,41,42 The effect of endodontic access
through all-ceramic restorations on the crown
mechanical and physical properties has been a
subject of many in vitro studies.42-53 Access prepa-

rations through ceramic crowns are usually accom-
plished with high-speed diamond burs, which pro-
duce a machining loading strain process that is said
to initiate both surface and subsurface ceramic
cracks that lead to structural weakness.54-59 Accord-
ingly, the all-ceramic crown endodontic access
preparation has been suggested as the nidus of
following catastrophic complete crown failures,48,49

while work by Grobecker-Karl and colleagues60

report that monolithic zirconia is less susceptible to
chipping and cracking due to endodontic access.
Furthermore, it has been reported that flaw gener-
ation is independent of access technique and instru-
ments used, as high-efficiency cutting instruments
have been reported to cause ceramic flaws, regard-
less of the instrument composition.48 Adhesive
technology under in vitro conditions have shown
some promise in strengthening some ceramic sys-
tems,61,62 but these results are difficult to relate
clinically, as in vitro ceramic evaluations have yet to
correlate with clinical failure patterns.63-66 Addition-
ally, a recent systematic review could not identify a
best practice guideline for endodontic access repair
within all-ceramic complete crowns.67 In vitro stud-
ies that approximate the clinical conditions involving
endodontic access on full-contour ceramic crowns
luted on prepared tooth structure are limited. The
purpose of this study was to evaluate the effect of
endodontic access preparation upon the failure load
resistance of adhesively luted lithium disilicate (LD)
and monolithic yttria-stabilized zirconium dioxide
(Y-TZP) crowns luted both conventionally and
adhesively to prepared teeth. The null hypothesis
was that there would be no difference in the failure
load between intact and endodontically accessed all-
ceramic, full-crown restorations.

METHODS AND MATERIALS

Seventy-two freshly extracted human maxillary
molars were used in this evaluation. These teeth
were removed due to routine clinical indications in
local oral and maxillofacial surgery clinics. The teeth
were first mounted in autopolymerizing denture
base methacrylate resin (Diamond D, Keystone
Industries, Gibbstown, NJ, USA). The specimens
were then assigned to groups per Figure 1. The
specimens were first randomly divided into two
groups. One group (n=48) was designated as the Y-
TZP (InCoris TZI, Dentsply Sirona USA, York, PA,
USA) monolithic crown group, while the second
group (n=24) served as the LD (IPS eMax CAD,
Ivoclar Vivadent, Amherst, NY, USA) complete
crown group. The LD group was further subdivided
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into two groups (n=12): one restored group received
endodontic access, while the other received no
further treatment and served as a control. The Y-
TZP group (n=48) was subdivided into two groups
(n=24): one group received an adhesively luted
complete Y-TZP crown, while the remaining group
(n=24) was conventionally cemented using a glass
ionomer luting agent. Based on luting strategy, each
Y-TZP group was then further subdivided (n=12):
one group was prepared with an endodontic access,
while the other served as a control.

Specimen occlusal surfaces were ground flat to
approximately 1 mm below the marginal ridge and
then prepared by one researcher following manufac-
turer preparation recommendations for each crown
substrate. A high-speed electric dental handpiece
(EA-51LT, Adec, Newburg, OR, USA) with a dia-
mond bur (8845KR.31.025, Brassler USA,
Savannah, GA, USA) was used under continuous
water coolant spray. A total occlusal convergence of
108 with a 3 mm occlusogingival axial wall height
was standardized by using the handpiece in a fixed
lathe arrangement. Preparation features and
preparation surface area were confirmed and
recorded with a digital recording microscope (KH-
7700, Hirox USA, Hackensack, NJ, USA). All
scanning and restoration procedures were then
completed by a second researcher. The prepared
molars were inserted into a quadrant template
representing clinical conditions with a digital
image captured using a computer-aided design/
computer-aided milling (CAD/CAM) acquisition
device (inEos Blue, Dentsply Sirona]), while CAD/
CAM software (in Lab, version 4.0.0, Dentsply
Sirona) was used for restoration design.
Restorat ion contours and anatomy were
standardized using a biomimetric copy with the Y-

TZP restorations designed with a minimal 1.5 mm
occlusal thickness following recommendations at
that time, while the LD restorations had 2.0 mm
minimal occlusal thickness. The LD groups were
milled (MCXL, Dentsply Sirona) and after fit
verification were crystallized in a dental laboratory
furnace (Programat P700, Ivoclar Vivadent). Each
restoration received post-crystallization adjustment
and preparation seating verification using disclosing
powder (Occlude, Pascal International, Bellevue,
WA, USA) followed by steam cleaning and drying
with oil-free compressed air. The restoration intaglio
surface was treated with 5% hydrofluoric acid (IPS
Ceramic Etching Gel, Ivoclar Vivadent) for 20
seconds, rinsed, and dried, which was then followed
by ceramic primer application (Clearfil Ceramic
primer, Kuraray America, Houston, TX, USA) that
was dried using compressed air. All manufacturer
recommendations that were current at the time of
this evaluation were followed.

The tooth surface was prepared for luting using a
pumice water slurry followed by rinsing and drying
of the dentin surface. The restoration was then luted
with a self-adhesive resin cement (RelyX Unicem2,
3M ESPE, St Paul, MN, USA) to margin closure
using digital pressure; excess cement was removed
followed by light activation using a Polywave light-
emitting diode (LED) visible light curing unit (Blue-
phase G2, Ivoclar Vivadent) for 20 seconds on the
facial, lingual, and occlusal surfaces.

The Y-TZP crowns were milled (MCXL, Dentsply
Sirona) followed by sintering in a laboratory furnace
(inFire, Dentsply Sirona) following manufacturer
recommendations. Sintered restorations were seated
and adjusted in the same manner as the LD groups.
After cleaning and drying, half (n=24) of the Y-TZP
intaglio surfaces were treated using 30 lm silicatized

Figure 1. Study protocol outline.
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sand (CoJet System, 3M ESPE) applied with 2-3 bar
pressure followed by ceramic primer application
(Clearfil Ceramic Primer, Kuraray America) then
luted in the same manner as the LD specimens using
a self-adhesive resin luting agent (RelyX Unicem 2,
3M ESPE). The remaining (n=24) Y-TZP complete
crown intaglio surfaces were treated with 40 lm
alumina and were luted with a conventional glass-
ionomer luting agent (Ketac Cem, 3M ESPE). All
materials were applied following manufacturer
recommendations. All specimens were then stored
under dark conditions at 378C 6 18C and 98% 6 1%
humidity. After 24 hours, two of the Y-TZP restored
groups and one of the LD restored groups received
endodontic access preparation by a board-certified
endodontist using diamond burs (Predator Zirconia
Bur, Clinicians Choice, New Milford, CT, USA). To
somewhat follow clinical conditions, the endodontic
access opening area was not standardized but was
determined by the endodontist’s professional judg-
ment regarding access to and instrumentation of the
specimen’s canals. Endodontic access opening area
and approximate occlusal surface area were mea-
sured using a digital recording microscope (7700,
Hirox USA).

The pulp chambers were restored using a self-etch,
dual-cure adhesive (Clearfil DC, Kuraray America)
with a dual-cure, resin core material (Gradia Core,
GC America, Alsip, IL, USA). The coronal prepara-
tion of the LD specimens was repaired with a nano-
hybrid resin composite (Tetric Evo Ceram, Ivoclar
Vivadent) after 5% hydrofluoric acid (IPS Ceramic
Etching Gel, Ivoclar-Vivadent) treatment of the
endodontic access ceramic margin, primer solution
application, (Clearfil Ceramic Primer, Kuraray
America), and a self-etch, two-step adhesive (Clearfil
SE, Kuraray America). The Y-TZP specimen access
was repaired in a similar fashion except that the
endodontic access marginal area was prepared using

silicatized sand (CoJet System, 3M ESPE) followed
by ceramic primer application (Clearfil Ceramic
Primer, Kuraray America). All materials were used
following manufacturer directions. Any required
photopolymerization was provided by a Polywave
LED visible light curing unit (BluePhase G2, Ivoclar
Vivadent) in which performance (1200 mW/cm2) was
periodically assessed with a radiometer (bluephase
Meter II, Ivoclar Vivadent). All restored specimens
were stored in 100% humidity at 378C for 24 hours
until testing.

Specimens were placed into a fixture mounted on a
universal testing machine (RT-5, MTS Corporation,
Eden Prairie, MN, USA) and loaded axially until
failure at a rate of 0.5 mm per minute using a
hardened, 3 mm diameter, stainless steel piston
containing a 0.5 m radius of curvature.66 Mean
failure load results were first analyzed with the
Shapiro-Wilk and Bartlett tests, which identified
both a non-normal data distribution and variance
inhomogeneity. Mean data for each material and
luting strategy were analyzed using Mann Whitney
U test at a 95% level of confidence (a=0.05).

RESULTS

Resultant mean preparation parameters are listed in
Table 1. Preparation standardization was reasonably
achieved, with surface area covariance ranging from
8% to 16% within each group with an overall
coefficient of variation approximating 10% between
the groups. Endodontic access openings were less
than 10 mm2 and did not represent greater than 16%
of the estimated occlusal surface. The mean failure
load results are listed in Table 2. Failure load results
found that fracture strength was not significantly
affected by endodontic access through both adhe-
sively luted LD and Y-TZP crowns. However, the
fracture strength of the conventional glass ionomer

Table 1: Mean Preparation Parameters

Group
(n=12 each)

Mean Surface
Area

(mm2)

Mean Axial
Wall Height

(mm)

Mean Total Occlusal
Convergence

(degrees)

Mean Endodontic
Access Opening

(mm2)

Mean Endodontic Access
Opening Percentage

of Occlusal Surface (%)

1 ZR-KC 115.5 (9.6) 3.03 (0.05) 10.1 (1.01) NA NA

2 ZR-KC endodontic access 113.5 (14.9) 3.02 (0.04) 10.3 (0.8) 6.01 (0.64) 11.02 (1.1)

3 ZR-RX 131.3 (13.1) 3.02 (0.05) 10.4 (0.8) NA NA

4 ZR-RX endodontic access 112.6 (9.0) 3.03 (0.05) 10.4 (0.6) 8.6 (0.97) 14.2 (1.2)

5 LD-RX 101.8 (7.8) 3.02 (0.03) 10.6 (0.7) NA NA

6 LD-RX- endodontic access 102.1 (16.8) 3.02 (0.04) 10.6 (0.5) 9.11 (1.56) 15.5 (2.8)

Abbreviations: LD-RX, lithium disilicate luted with self-adhesive resin cement; NA, nonapplicable; ZR-KC, zirconia luted with conventional glass ionomer cement; ZR-
RX, zirconia luted with self-adhesive resin cement.
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luted Y-TZP crowns were significantly reduced by
endodontic access preparation.

DISCUSSION

Clinicians may encounter a tooth restored with a
complete ceramic crown that requires endodontic
treatment. Current estimates suggest that almost
50% of nonsurgical root canal treatments are
performed through full-coverage restorations26,27

with the repaired crown serving as the definitive
restoration approximately three fourths of the
time.27 In contrast to metal, ceramic materials are
brittle, and mechanical preparation may induce
fractures, defects, and crack initiation.51-54 Physical
and mechanical properties may be impaired, and
some authors suggest that the endodontic access is
the source of any ensuing catastrophic failure of
repaired ceramic crowns.46 Despite the myriad
factors affecting the durability of a ceramic crown
containing an endodontic access, a recent systematic
review of in vitro studies could not identify a best-
practice protocol for improving the fracture resis-
tance of ceramic crowns containing an endodontic
access.67

The present study investigated the effect of
endodontic access preparation on the failure load of
LD and monolithic Y-TZP all-ceramic crowns luted
onto prepared teeth. Adhesive luting protocols were
used for both monolithic Y-TZP and LD materials,
with additional Y-TZP groups evaluated using a
conventional glass ionomer luting strategy. Prepa-
rations were accomplished by one researcher using a
lathe-type device, which allowed standardization to
be reasonably attained with intragroup covariance
less than 16% and overall variation between the

groups less than 10%. Conservative endodontic
access preparations were also plausibly homoge-
neous with preparation areas less than 10 mm2 that
involved less than 16% of the occlusal surface area
(Figure 2). Although the endodontic access opening
and the calculated surface area of the testing probe
were similar, anatomy of the molar occlusal surface
ensured that the piston contact area was usually
outside the access preparation margins, as outlined
in Figure 3. Under the conditions of this study, the
endodontic access dimension did not significantly
decrease the failure load of adhesively luted mono-
lithic Y-TZP and LD crowns. However, this was not
observed with conventional glass ionomer cementa-
tion of Y-TZP. While adhesive resin techniques have
been suggested to ameliorate surface flaws with
predominantly glassy ceramics,61-63 the authors
advise caution regarding speculation that resin
infiltration was a significant factor in this study,
especially when the current status of reliable
bonding to Y-TZP is considered.38-40

A number of previous studies concerning endodon-
tic access preparations on molar all-ceramic crowns
have used resin die substrates instead of prepared
tooth surface. While resin die materials allow
substrate uniformity, the authors maintain that
prepared tooth structure substrates more closely
approximate the clinical situation. Even so, Bompo-
laki and others46 and Wood and others47 found that
endodontic access significantly weakened LD, lami-
nated Y-TZP core, and alumina crowns, respectively.
Qeblawi and others48 reported that the adhesive
cementation did improve endodontically accessed LD
fracture resistance compared with those luted with
zinc phosphate. Furthermore, a similar LD milled

Table 2: Mean Failure Load Results

Group
(n=12 each)

Failure Load (N)a

ZR-KC 7473 (2201)Y

ZR-KC endodontic access 5404 (1141)Z

p value 0.0068

ZR-RX 5805 (1373)Y

ZR-RX endodontic access 4852 (1520)Y

p value 0.12

LD-RX 2492 (835)Y

LD-RX endodontic access 1787 (487)Y

p value 0.078

Abbreviations: LD-RX, lithium disilicate luted with self-adhesive resin
cement; ZR-KC, zirconia luted with conventional glass ionomer cement;
ZR-RX, zirconia luted with self-adhesive resin cement.
a Groups with same capital letter are similar within each group only (Mann
Whitney U, p=0.05).

Figure 2. Zirconia crown with endodontic access.

Figure 3. Failed view of the crown depicted in Figure 2.
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materials outcome was observed with the findings of
Bompolaki and others46 as endodontic access did not
significantly reduce failure load.The results for the
LD control group compare favorably with that of
Okada and others,68 Mörmann and others,69 and
Carvalho and others.70 The results of this study are
similar to the recent report by Scioscia and col-
leagues71 in that the intact adhesively luted Y-TZP
crowns failure load was similar to that found in this
study. While the present study’s focus did not
concern endodontic access repair protocols, different
materials were used in contrast to that of Scioscia
and others71 with diverse results. This disparity can
be somewhat reconciled in that the present study
used a more conservative endodontic access prepa-
ration and that thermomechanical loading was not
available as well.

The endodontic access preparations were not
standardized in this study. To simulate clinical
conditions, access cavity dimension was determined
by a board-certified endodontist’s ability to access all
root canals for proper instrumentation. Accordingly,
endodontic access cavity preparation size and form
within all-ceramic crowns are a topic of interest and
controversy. Earlier studies72-76 have reported some
benefits with a conservative (eg, contracted, ninja)
endodontic access. Recently, Corsentino and others77

found that that access cavity size was not a significant
factor in fracture strength of endodontically treated
molars, which was reinforced by Rover and others78

and Moore and others.79 Özyürek and others80

reported no difference in fracture strength of man-
dibular first molars between conservative and tradi-
tional access preparations, and Jiang and others,81

using an in silico finite element analysis, found no
occlusal stress distribution differences between con-
servative, traditional, and extended endodontic access
preparations. Furthermore, Silva and others82 con-
ducted a systematic review of all in vitro studies that
concluded that the conservative endodontic access
provided no observed advantage. Based on this more
recent information, the authors reasoned that the
disparity in endodontic access preparation size would
have a minimal effect on this study’s results.

Under this study’s conditions, the null hypothesis
was upheld in the situation of adhesive resin
cementation. The conservative endodontic access
preparation did not significantly reduce the adhe-
sively luted Y-TZP and LD all-ceramic crown failure
loads. However, the null hypothesis was rejected as
significantly lower failure load resistance was ob-
served with monolithic Y-TZP crowns containing an
endodontic access when a conventional glass ion-

omer cement was used. A curious result of this study
was that the Y-TZP crowns luted with a conventional
glass ionomer cement luting agent demonstrated
greater failure loads compared with the adhesive
resin luting method. The authors have no current
definitive explanation for this unexpected finding, as
the mechanical and physical properties of the self-
adhesive resin luting agent are overall greater than
that of the conventional glass ionomer cement.83,84

Since the results were the same for more than one
group, the authors strongly suspect that some aspect
of the testing conditions was involved, as well as
possible difference with supporting tooth structure
to a minor extent.

This study contains definite limitations, which are
the subject of ongoing studies. Due to technology
access constraints, this initial evaluation used axial
static loading forces and could not contain an
environmental fatigue component, as cyclic loading
under wet conditions is suggested to produce failure
results that may have more clinical relevance.85,86 It
can also be successfully argued that the failure modes
demonstrated during this evaluation did not replicate
that usually observed with clinical failure. To wit,
retrieved clinically failed ceramics are thought to
initiate from internal flaws enabling stress concen-
trations leading to cracks and defects at the ceramic-
cement interface, all of which are accentuated from
masticatory occlusal forces. 64,65,87,88

Some authors suggest that in silico finite element
analysis methods may provide more clinically perti-
nent evidence86,89-92 and allow investigation into such
parameters as endodontic access geometry and area,
which would be difficult to standardize.86 Since a
preexisting study with similar testing conditions as
the current investigation was not available in the
current literature, the chosen sample size was an
empirical increase to a slightly larger number than
that usually observed in most studies. Work is
planned using the present findings to establish more
robust testing conditions to hopefully proffer future
results with improved statistical analytical capability.

Furthermore, this study’s results reflect restora-
tions that were prepared using manufacturer rec-
ommendations that have recently been updated.
Nevertheless, the authors maintain that this initial
evaluation provides meaningful information noting
that a conservative endodontic access did not
significantly decrease the failure load resistance of
monolithic Y-TZP and LD crowns. Further ongoing
studies in this research series will include updated
crown parameter dimensions and employ dynamic
environmental functional fatigue testing. Most im-
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portantly, clinicians should be strongly cautioned
not to be emboldened by these initial results until
further investigations have been accomplished.

CONCLUSION

Under this study’s conditions, in vitro static testing
suggests that a conservative endodontic access
preparation does not significantly affect the failure
load resistance of adhesively luted monolithic Y-TZP
and LD crowns. Definitive recommendations cannot
be proposed until further studies involving fatigue
testing and the ability to establish an effective
coronal seal have been accomplished.
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