
SUMMARY

Objectives: To evaluate the three-dimensional (3D) 
changes of three elastomeric impression materials 
using a novel measurement method for the first 24 
hours after preparation.

Methods and Materials: Three impression materials 
consisting of a low-viscosity polyvinyl siloxane 
(PVS) (Aquasil LV, Dentsply Sirona, Charlotte, 
NC, USA) and two vinyl polyether silicone (VPES) 
materials consisting of a light body (EXA’lence 
LB, GC America, Alsip, IL, USA) and monophase 
(EXA’lence Monophase, GC America) materials 
were used in this study. All materials were prepared 
following manufacturer’s recommendations with 
approximately 1-2 millimeters of material placed on 
the measurement pedestal of a calibrated noncontact, 
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video imaging based, volumetric change measuring 
device (AcuVol ver 2.5.9, Bisco, Schaumburg, IL, 
USA). Data collection was initiated immediately, 
with measurements made every 30 seconds for 24 
hours. Each material was evaluated 10 times (n=10). 
Evaluated parameters included were 24-hour mean 
shrinkage, mean shrinkage at time of recommended 
first pour, mean shrinkage between recommended 
first pour and 24 hours, mean maximum shrinkage, 
and the time of maximum shrinkage. Mean data, 
both within and between each group, was evaluated 
using Kruskal–Wallis/Dunn’s tests at a 95% level of 
confidence (α=0.05).

Results: All three materials were found to have 
significant differences (p<0.001) in volumetric 
shrinkage over 24 hours. Aquasil LV and EXA’lence 
LB polymerization shrinkage rates were statistically 
similar all through the 24-hour evaluation 
(p=0.92). All three materials demonstrated similar 
(p=0.19) shrinkage between 10 and 15 minutes 
after preparation, while between 5 and 16 hours 
both EXA’lence Monophase and low-viscosity 
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material evaporation,11,26 as well as thermal differences 
between the intraoral and laboratory environment.27-29 
PVS material stability may be further challenged by 
impression technique, material thickness control,28,30-32 

as well as filler type and content.33-36

Current elastomeric impression material dental 
standards specify only linear dimensional stability 
requirements. American National Standard 
Institute/American Dental Association (ANSI/
ADA) Specification Number 19 specifies that linear 
dimensional change can be no greater than 1.5%, 
which is usually assessed at 24 hours after preparation.37 
Accordingly, PVS linear dimensional stability has 
been reported.27,38-40 However, other researchers have 
studied three-dimensional (3D) stability using various 
methods to include calculated linear measurements, 
photometric topographical, and microtomographic 
(microCT) techniques. 6,8,29,39,42 In addition, the time of 
stability assessments are various that have included: 
Immediately 27,29,40,41-45; 1 hour6,27,40,41; 1.5 hours44; 2 
hours8; and 24 hours19,39,46 after preparation. To the 
author’s best knowledge, no studies have reported 
real-time, 3D volumetric changes over the first 24 
hours after preparation. The purpose of this study was 
to evaluate the real-time, 3D dimensional behavior 
of three impression materials utilizing a shrinkage 
evaluation method not previously used for elastomeric 
impression materials. The null hypothesis was that this 
methodology would find that there were no differences 
in the 3D dimensional stability between the impression 
materials being evaluated.

METHODS AND MATERIALS
The impression materials evaluated in this study were 
a low viscosity PVS material (Aquasil LV, Dentsply 
Sirona, Charlotte, NC, USA ), a light body vinyl 
polyether silicone (VPES) material (EXA’lence LB, 
GC America Inc, Alsip, IL 60803 USA), as well as a 
monophase VPES material (EXA’lence Monophase, 
GC America). All the materials were prepared following 
manufacturer’s instructions using supplied mixing tips. 
First, an initial amount of mixed impression material was 
extruded to ensure quality of mix. Next, 1-2 milliliters 
of material was placed on the polytetrafluoroethylene 
(PTFE) measurement pedestal in a calibrated (eg, gray 
scale and pedestal position) noncontact, video imaging 
based, volumetric change measuring device (AcuVol 
ver 2.5.9, Bisco, Schaumburg, IL, USA). Figure 
1 depicts a representative image of an impression 
material placed on the measurement pedestal, while 
Figure 2 displays the measurement screen as seen on 
the computer monitor. The yellow line at the base of 
the impression material represents the pedestal outline, 

materials demonstrated similar polymerization 
shrinkage values (p=0.22). EXA’lence Monophase 
demonstrated significantly greater 24-hour mean 
shrinkage (p<0.008) as well as shrinkage between 
recommended first pour time and 24 hours 
(p=0.003) than Aquasil LV and EXA’lence LB. 
EXA’lence Monophase demonstrated significantly 
greater (p=0.002) shrinkage at the recommended 
time of first pour as compared to Aquasil LV and 
EXA’lence LB that displayed similar shrinkage 
(p=0.89). Furthermore, all materials demonstrated 
increasing polymerization shrinkage values that 
reached a maximum between 16 for Aquasil 
LV and 20 hours for EXA’lence LB, after which 
some relaxation behavior was observed. However, 
EXA’lence Monophase did not display any 
relaxation behavior over the 24-hour evaluation.

Conclusions: Under the conditions of this study, 
volumetric polymerization shrinkage was observed 
for one polyvinyl siloxane (PVS) and two vinyl 
polyether silicone (VPES) materials for up to 24 
hours. All impression materials exhibited fast 
early volumetric shrinkage that continued past 
the manufacturer’s recommended removal time. 
Dimensional change behavior was not uniform 
within or between groups; resultant volume change 
between the manufacturer recommended pouring 
time and 24 hours might represent up to from 20% 
to 30% of the total material shrinkage. It may be 
prudent to pour elastomeric impressions at the 
earliest time possible following the manufacturer’s 
recommendations. 

INTRODUCTION
Dental elastomeric impression materials should 
accurately reproduce intraoral features without 
distortion, as well as maintain a reasonable measure 
of stability after removal from the mouth.1 Currently, 
polyvinyl siloxane (PVS) elastomeric impression 
materials are the predominant clinical choice for 
indirect restoration fabrication,2-5 with PVS material 
accuracy being well described,2-10 with some reports 
noting suitable linear dimensional stability for up to 
14 days.3,4,7,11 PVS materials possess equivalent accuracy 
as compared to digital scanning technology7,9,12-19 but 
have been described as providing improved precision 
in situations involving multiple implant body, and 
dual-arch and full-arch impression requirements.20-24 
PVS elastomeric impression materials are indeed 
subject to dimensional changes due to time-dependent 
polymerization shrinkage,3,25 constituent and product 
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which was predetermined before material placement, 
while the green line outlines the impression material to 
be analyzed. Data collection was initiated immediately 
after placement with volume measurements made 
every 30 seconds for 24 hours. Each material was 
evaluated 10 times (n=10). Evaluated parameters 
included 24-hour mean shrinkage, mean shrinkage at 
the manufacturer’s recommended pour time, mean 
shrinkage between the manufacturer’s recommended 
pour time and 24 hours, the mean maximum shrinkage, 
and the time of maximum shrinkage. Furthermore, 
volumetric shrinkage was analyzed every minute 
during the first 5 minutes, followed by evaluation every 
5 minutes up to 30 minutes. Mean data was found 
to contain abnormalities in both data distribution as 
well as variance homogeneity by the Shapiro–Wilk 
and Bartlett Test, respectively. Therefore, data was 
analyzed by the Kruskal–Wallis test with Dunn’s post 
hoc analysis. All analysis was performed at a 95% level 
of confidence (α=0.05)

RESULTS
Comparative summary results are shown in Table 1, 
with mean results initially displayed every minute for 
the first 5 minutes. Then results are listed at 5-minute 
intervals until 30 minutes after preparation, followed 
by mean results being displayed every 30 minutes 
until up to 6 hours after preparation. Thereafter, 
hourly mean results are posted up to 24 hours. All 
three impression materials demonstrated significant 

differences in volumetric shrinkage over the 24-
hour evaluation period. All three materials were 
hallmarked with similarity in shrinkage values; the 
high observed covariance undoubtedly contributed 
to this outcome. However, numerical trends can be 
observed when shrinkage change slowly subsides. 
This can be conjectured starting at approximately 
8 hours for EXA’lence LB, 11 hours for Aquasil LV, 
but the EXA’lence Monophase trend requiring up to 
approximately 19 hours after preparation.

Comparison between materials found that Aquasil 
LV and EXA’lence LB polymerization shrinkage 
were statistically similar (p=0.92) all through the 24-
hour evaluation. All three materials demonstrated 
similar shrinkage (p=0.19) between 10 and 15 minutes 
after preparation, while both EXA’lence viscosities 
had similar (p=0.22) polymerization shrinkage values 
between 5 and 16 hours. The mean real-time shrinkage 
data over the 24-hour evaluation is graphically 
displayed in Figure 3.

The volumetric polymerization shrinkage behavior 
during the first 30 minutes are detailed in Figure 4.

EXA’lence monophase demonstrated the highest 
initial volumetric polymerization shrinkage that 
transformed into a slower rate, starting approximately 
8 minutes after material preparation that was observed 
to change to a slower rate at 12 minutes. Aquasil LV 
displayed a slower polymerization shrinkage change 
but somewhat mimicked, albeit on a lesser scale, 
the rate change behavior of EXA’lence Monophase. 
EXA’lence LB demonstrated the slowest initial 
polymerization shrinkage; however, this rate did not 
display as a dramatic rate transformation like the 
others but continued and surpassed Aquasil LV at 
approximately 15 minutes after preparation.

Afterwards, all three materials continued to 
demonstrate volumetric polymerization shrinkage, 
with maximum shrinkage occurring at approximately 
16 hours after preparation with Aquasil LV exhibiting 

Figure 1. Impression material placed on measurement pedestal. 
Impression material (green) contoured to fit on measurement 
pedestal (white). Figure 2. AcuVol measurement screen.
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Table 1: Mean Shrinkage (%) with Timea

Time (hours) Aquasil LV EXA’lence LB EXA’lence Monophase

0 0.00 A 0.00 A 0.00 A

0.01 (1m) 0.08 (0.1) Aa 0.06 (0.01) ABa 0.24 (0.1) ABb

0.03 (2m) 0.16 (0.1) ABa 0.16 (0.1) ABCab 0.38 (0.2) ABCb

0.05 (3m) 0.28 (0.1) ABa 0.21 (0.1) ABCDa 0.55 (0.1) ABCDb

0.06 (4m) 0.38 (0.1) ABCDa 0.21 (0.1) ABCDEa 0.66 (0.1) ABCDEb

0.08 (5m) 0.44 (0.1) ABCDEa 0.33 (0.1) ABCDEa 0.79 (0.2) ABCDEb

0.16 (10m) 0.56 (0.1) ABCDEFa 0.51 (0.2) ABCDEa 1.08 (0.4) ABCDEa

0.25 (15m) 0.57 (0.2) ABCDEFa 0.59 (0.2) BCDEa 1.16 (0.4) BCDEa

0.5 0.62 (0.1) BCDEFa 0.73 (0.2) BCDEa 1.13 (0.4) BCDEb 

1 0.65 (0.2) CDEFa 0.75 (0.2) BCDEa 1.09 (0.3) BCDEb

1.5 0.67 (0.2) DEFa 0.78 (0.2) BCDEa 1.13 (0.4) BCDEb

2 0.70 (0.2) DEFa 0.78 (0.3) BCDEa 1.08 (0.3) BCDEb

2.5 0.70 (0.2) DEFa 0.80 (0.3) BCDEa 1.12 (0.4) BCDEb

3 0.73 (0.2) DEFa 0.79 (0.3) CDEa 1.15 (0.3) BCDEb

3.5 0.75 (0.2) DEFa 0.82 (0.3) CDEa 1.15 (0.3) CDEb

4 0.75 (0.2) DEFa 0.85 (0.3) CDEa 1.20 (0.4) CDEb

4.5 0.74 (0.2) DEFa 0.86 (0.3) CDEa 1.19 (0.3) CDEb

5 0.77 (0.2) EFa 0.88 (0.3) DEFGab 1.17 (0.4) CDEb

5.5 0.77 (0.2) EFa 0.91 (0.3) DEab 1.27 (0.4) DEb

6 0.75 (0.2) EFa 0.89 (0.3) DEab 1.28 (0.5) DEb

7 0.78 (0.2) Fa 0.94 (0.3) DEa 1.35 (0.5) DEb

8 0.77 (0.2) Fa 0.99 (0.3) DEa 1.35 (0.56) DEab

9 0.78 (0.2) Fa 1.0 (0.3) Eab 1.42 (0.6) DEb

10 0.79 (0.2) Fa 1.0 (0.3) Eab 1.41 (0.5) Eb

11 0.83 (0.2) Fa 1.05 (0.3) Eab 1.40 (0.4) Eb

12 0.85 (0.2) Fa 1.01 (0.3) Eab 1.42 (0.4) Eb

13 0.84 (0.2) Fa 1.01 (0.3) Eab 1.40 (0.4) Eb

14 0.85 (0.2) Fa 1.01 (0.2) Eab 1.40 (0.4) Eb

15 0.85 (0.2) Fa 1.0 (0.3) Eab 1.43 (0.5) Eb

16 0.83 (0.2) Fa 1.0 (0.3) Eab 1.46 (0.5) Eb

17 0.82 (0.2) Fa 1.0 (0.2) Ea 1.51 (0.5) Eb

18 0.87 (0.1) Fa 1.0 (0.3) Ea 1.55 (0.5) Eb

19 0.85 (0.2) Fa 1.01 (0.3) Ea 1.64 (0.6) Eb

20 0.84 (0.2) Fa 0.96 (0.3) Ea 1.65 (0.6) Eb

21 0.84 (0.2) Fa 0.98 (0.3) Ea 1.60 (0.5) Eb

22 0.83 (0.2) Fa 0.98 (0.3) Ea 1.67 (0.6) Eb

23 0.82 (0.2) Fa 0.95 (0.3) Ea 1.65 (0.6) Eb

24 0.78 (0.1) Fa 0.93 (0.3) Ea 1.66 (0.6) Eb
a Uppercase letters identify similar groups per column. Lowercase letters identifiy similar groups per row.
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maximum shrinkage at 16 hours after preparation, while 
EXA’lence LB followed suit at 20 hours. EXA’lence 
Monophase displayed variable behavior but did not 
demonstrate any relaxation over 24 hours.

The mean 24-hour polymerization shrinkage, mean 
polymerization shrinkage at recommended pour time, 
mean shrinkage between recommended pour time and 
24 hours, maximum shrinkage, and time of maximum 
shrinkage is shown in Table 2. EXA’lence Monophase 
demonstrated a significantly greater 24-hour mean 
shrinkage (p<0.008) as well as shrinkage between the 
recommended pour time and 24 hours (p=0.003) than 
Aquasil LV and EXA’lence LB. EXA’lence Monophase 

demonstrated significantly greater (p=0.002) shrinkage 
at recommended time of first pour as compared to 
Aquasil LV and EXA’lence LB, which displayed 
similar volumetric shrinkage (p=0.89). Furthermore, 
EXA’lence Monophase also displayed a significantly 
greater mean maximum shrinkage (p<0.002) than the 
similar Aquasil LV and EXA’lence LB (p=0.67), but 
there was no significant difference in the time that the 
maximum shrinkage occurred (p=0.89).

DISCUSSION
PVS impression materials have a documented market 
tenure of linear dimensional stablility.2,3,7-9,12-17 PVS base 
materials usually consist of a polymethyl hydrogen 
siloxane copolymer and an accelerator containing 
polydimethylsiloxane and a chloroplatinic acid metal 
complex catalyst.2 Notably hydrophobic due to the 
aliphatic hydrocarbon chains surrounding the siloxane 
bond, PVS materials were modified with intrinsic 
surfactants,47 ostensibly to afford better stone-pouring 
behavior and gypsum compatibility.48 VPES materials 
were introduced as an impression material that would 
be intrinsically hydrophilic without added surfactants 
that would also provide the clinical handling of PVS 
materials.11 The manufacturer reports that EXA’lence 
materials contain a 5%-20% polyether component, 
which is presumably responsible for enhancing the 
hydrophilicity of the impression material.11 The PVS 
component in VPES materials is reported to contain both 
polyvinyl dimethyl and methyl hydrogen components,11 
and VPES accuracy has been reported in several 
studies.11,42,44,46,49,50 It should be noted that both PVS and 
VPES base and accelerator pastes also contain fillers that 

Figure 3. Mean real time data graphs. n = 10; 0th Order Savitzky-Golay smoothing.

Figure 4. Early polymerization shrinkage data (%). n = 10; raw 
data not smoothed. Polymerization shrinkage slope (color-coded 
dotted line, formula); WT = Vertical dashed line identifies end of 
working time for all materials; SET = Vertical dashed line identifies 
manufacturer’s recommended removal from mouth time.

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-09-02 via free access



Operative DentistryE312

are added to modify handling properties, mechanical 
properties, and dimensional stability.51 Depending on 
content and morphology, different filler materials can 
interface and physically interact with the impression 
material polymer chains, and improve mechanical 
properties and stability.35,36,51,52 Furthermore, some filler 
materials have been reported to be surface treated to 
improve interactions with the polymer chains.36 The 
Safety Data Sheet (SDS) does identify that Aquasil LV 
may contain up to 60%-70% silicon dioxide fillers,53 
while EXA’lence materials are said to contain up to 
65% silicone dioxide fillers.11 The precise etiology for the 
noted volumetric polymerization shrinkage difference 
between the two VPES materials is not precisely known, 
but speculatively manufacturers can manipulate both 
polymer molecular weight and the filler constituent to 
achieve the desired material mechanical properties.

Aquasil LV has a stated working time of 1 minute and 
10 seconds, while both VPES materials are described to 
have 2 minutes of working time.54,55 All three products are 
said to be ready for removal from the mouth at 5 minutes 
after material preparation.54,55 As evidenced in Figure 4, 
all materials still experienced a considerable volumetric 
polymerization shrinkage at the manufacturer’s 
recommended mouth removal time. Concern may 
exist with the introduction of removal distortion forces 
interfering with polymer chain polymerization and 
crosslinking. While the added effects of distortion 
are not fully appreciated, infrared Fourier transform 
spectroscopy (FTIR) evidence from Derchi and others56 

suggests that the majority of Aquasil polymer cross-
linking actions has been accomplished by 300 seconds 
after material preparation. However, no similar studies 
with the VPES materials can be found in the literature.

For model fabrication, Aquasil LV is said to able to be 
poured with gypsum stone 30 minutes after disinfection, 
while it is recommended to wait up to 60 minutes for 
an epoxy material.54 The manufacturer recommends 
that both EXA’Lence materials be poured 60 minutes 

after mouth removal.55 At these recommended 
gypsum pouring times, all the materials are beyond 
the observed initial faster changes of polymerization 
shrinkage. However, between the manufacturer’s 
recommended pouring time and 24 hours later, both 
Aquasil LV and EXA’lence LB exhibited an additional 
0.16% and 0.18% volumetric shrinkage, respectively, 
which represents approximately 20% of the total 24-
hour shrinkage for both materials. Over the same 
time, EXA’lence Monophase displays an additional 
0.57% polymerization shrinkage, which represents over 
34% of the material’s total shrinkage. While all the 
materials were noted to exhibit continued volumetric 
polymerization shrinkage, demonstrated points of 
maximum shrinkage were observed at approximately 
16 hours for Aquasil LV and 20 hours for EXA’lence LB. 
This volumetric shrinkage recovery occurred perhaps 
related to relaxation of internal stresses in the polymer 
network.1 However, any reduction did not compensate 
to values observed at the recommended pour time. Any 
shrinkage recovery with EXA’lence Monophase was 
not observed during the 24-hour evaluation time.

The null hypothesis was rejected, as significant 
difference in volumetric polymerization shrinkage 
behavior was observed. Direct comparison with 
other studies describing 3D impression material 
shrinkage analysis is difficult due to the introduction 
of the technology used in this study. However, using 
the linear results of diameter and height change 
reported by Gomez-Polo and others,40 a calculated 3D 
shrinkage change of a low-viscosity PVS material was 
approximately 0.22% between 1 and 24 hours. While 
this is indeed similar to that observed with Aquasil LV 
and EXA’lence LB in this study, the author assumes 
this similarity with caution, as different materials and 
testing methodologies were used.

Under the conditions of this study, the analysis 
method identified that a mean numerical 24-hour linear 
dimensional shrinkage assessment may not accurately 

Table 2: Mean Resultsa

Aquasil LV EXA’lence LB EXA’lence 
Monophase

Mean 24-hour Shrinkage (%) 0.76 (0.14) a 0.89 (0.2) a 1.43 (0.5) b

Mean Shrinkage at Recommended Pour Time (%) 0.62 (0.2) a 0.75 (.2) a 1.14 (0.4) b

Mean Shrinkage Between Recommended Pour Time and 
24 Hours (%)

0.16 (0.1) a 0.18 (0.2) a 0.52 (0.3) b

Mean Maximum Shrinkage (%) 1.04 (0.2) a 1.19 (0.3) a 1.93 (0.7) b

Mean Time of Maximum Shrinkage (Hours) 18.1 (4.5) a 16.4 (5.4) a —b

a Lowercase letters denote similar groups per row (Kruskal–Wallis/Dunn’s, n=10, p=0.05).
b Not determined.
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reflect the dimensional change dynamics demonstrated 
by elastomeric impression materials. Vasiliu and others57 

noted that elastic impression material contraction was 
not uniform during the first 24 hours after removal 
from the oral cavity. Accordingly, Chandran and 
others39 reported both 2D and 3D impression material 
shrinkage results, and found that while the materials 
easily met 2D linear requirements, 3D analysis 
identified volumetric distortion in some situations 
as great as 100 μm. Furthermore, Rodriguez and 
Bartlett 58 evaluated impression material stability, and 
discovered differences between linear and 3D methods, 
concluding that the 3D shape of a model influences 
impression material shrinkage over time. Levartovsky 
and others59 compared linear methods and a 3D tooth-
simulating model, and found that information derived 
from the 3D model analysis suggested that impressions 
derived from a one-step technique should be poured 
within 2 hours for the best accuracy, while materials 
and techniques met all linear dimensional change 
requirements.59 This was reinforced by Garg and 
others,60 who noted that single-step monophase viscosity 
impression material impressions demonstrated more 
distortion and suggested that pouring of the impression 
should not be delayed. Nassar and others11 noted that 
VPES materials provided good dimensional stability 
over a period of time. However, 3D measurement of 
produced die materials suggested that the best accuracy 
was exhibited at the recommended immediate pour 
time.11 The present study’s data suggests that gypsum 
cast accuracy may depend on the chosen time that 
the impression is poured after mouth removal, as the 
volumetric polymerization shrinkage continued to 
progress with time. It may be considered prudent to 
pour elastomeric impression materials at the earliest 
possible time recommended by the manufacturer.

Under the conditions of this study, the data suggests 
that by delaying pouring of an impression until 24 
hours after mouth removal, the continued volumetric 
shrinkage might afford a resultant gypsum preparation 
exhibiting up to 0.2% and 0.3% volume difference. 
Pereira and others12 reported that a polyether material 
provided a gypsum die that was larger than the 
master die. The authors reasoned that a slightly 
larger indirect restoration could be advantageous as to 
possibly providing more space for cement.12 However, 
this finding was contrasted by Emir and others,8 who 
reported that volumetric changes resulted in smaller 
definitive casts as compared to a master model. 
While differences in restoration size could hopefully 
be reconciled with adjustment of cast metal and/
or metal–ceramic crowns, evidence is emerging that 
identifies the importance of an accurately designed 

cement space with all ceramic crowns. Reports suggest 
possible etiology with monolithic ceramic crown 
clinical failures that originate from adhesive is due 
to radial forces that originate from adhesive cement 
polymerization stresses due to uneven and/or thicker 
adhesive resin-cement thickness between the tooth 
preparation and the intaglio ceramic crown surface.61-63

Limitations to this pilot study include the high 
data covariance that will be addressed in follow-up 
studies by using this study’s data for a power analysis. 
Improved data acquisition with hopeful covariance 
reduction may also be addressed by exploring methods 
to reduce the impression material’s surface reflectivity. 
Reduction of glare from the material surfaces may 
reduce the varied readings by the device’s sensitive 
video camera. Furthermore, future evaluations should 
use material from multiple impression material 
cartridges to improve the number of independent 
samples. Linear polymerization shrinkage was not 
assessed for comparison and will be included in future 
evaluations as well as a possible control material. While 
this method’s resultant data cannot be considered 
absolute, methods of calibration for this technology 
will be refined. Furthermore, these preliminary results 
may only apply to the materials tested, and should not 
be assumed to represent all PVS and VPES materials.

CONCLUSION
Under the conditions of this study, volumetric 
polymerization shrinkage was observed for one PVS and 
two VPES materials for up to 24 hours. All impression 
materials exhibited fast early volumetric shrinkage 
that continued past the manufacturer’s recommended 
removal time. Dimensional change behavior was not 
uniform within or between groups’ resultant volume 
change between the manufacturer’s recommended 
pouring time, and 24 hours might represent up to 
20%-30% of the total material shrinkage. Comparative 
literature identifies that linear polymerization shrinkage 
assessment methods may not accurately reflect 
impression material 3D dynamic shrinkage behavior. 
Evidence is presented that indicates it may be prudent to 
pour elastomeric impressions at the earliest time possible, 
following the manufacturer’s recommendations. The 
clinical implications of these findings are not currently 
appreciated, and continued work in this area to 
improve the experimental technique and evaluate more 
impression materials is recommended.
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